Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 15-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We formulate and discuss a problem of optimal recovery of values $T_af$ of pseudodifferential operators $T_a$ on an $m$-dimensional torus $\mathbb{T}^m$ with symbols $a$ from the classes $\widetilde{\Psi}_{\epsilon\,\theta}^{\tau\mathtt{m}}[\upsilon;$K,L$]$ on distributions $f$ from the classes $\mathrm{B}^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Nikol'skii–Besov type and $\mathrm{L}^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Lizorkin–Triebel type from finite spectral information about the symbol of the operator and the distribution (finite sets of Fourier coefficients of the symbol and the distribution). We show that the recovery method $\Upsilon_{\Lambda(\gamma, N)}$ constructed and studied in 2018 in the first part of this research is order-optimal (or at least linear order-optimal) in this problem for a number of relations between the parameters of the symbol class, the class of distributions, and the ambient space. Furthermore, the (linear) optimal recovery error has exact order of the corresponding Fourier widths of the classes $\mathrm{B}^{s - \tau\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ and $\mathrm{L}^{s - \tau\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$, respectively (Theorem 1). Simultaneously, the claim of Theorem 1 from part I of this research is proved under “natural” conditions on the differential parameters $\tau$ of the symbol classes $\widetilde{\Psi}_{\epsilon\,\theta}^{\tau\mathtt{m}}[\upsilon;$K,L$]$ and $s$ of the spaces $B^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Nikol'skii–Besov type and $L^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ of Lizorkin–Triebel type. It is also established that the upper estimates in Theorem 1 are order-exact (see Theorem 3).
Keywords: pseudodifferential operator on an m-dimensional torus, class of symbols (of product type), Nikol'skii-Besov / Lizorkin-Triebel space of distributions, optimal recovery of an operator class, error bounds of optimal recovery, Fourier width.
@article{TIMM_2019_25_4_a1,
     author = {D. B. Bazarkhanov},
     title = {Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. {II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {15--30},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 15
EP  - 30
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a1/
LA  - ru
ID  - TIMM_2019_25_4_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 15-30
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a1/
%G ru
%F TIMM_2019_25_4_a1
D. B. Bazarkhanov. Linear recovery of pseudodifferential operators on classes of smooth functions on an m-dimensional torus. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 15-30. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a1/

[1] Micchelli C.A., Rivlin T.J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, eds. C.A. Micchelli, T.J. Rivlin, Plenum, N Y etc., 1977, 1–54 | DOI | MR

[2] Micchelli C.A., Rivlin T.J., “Lectures on optimal recovery”, Numerical Analysis Lancaster, Lecture Notes Math., 1129, ed. P.R. Turner, Springer-Verlag, Berlin, 1984, 21–93 | DOI | MR

[3] Traub Dzh., Vozhnyakovskii Kh., Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983, 382 pp.

[4] Arestov V.V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. MIAN SSSR, 189, 1989, 3–20

[5] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | DOI | MR | Zbl

[6] Zhensykbaev A.A., Problemy vosstanovleniya operatorov, Regulyarnaya i khaoticheskaya dinamika, M.; Izhevsk, 2003, 411 pp.

[7] Dinh Dung, Temlyakov V.N., Ullrich T., Hyperbolic cross approximation, Birkhauser Springer, Basel, 2018, 218 pp. | DOI | MR | Zbl

[8] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269, 2010, 8–30 | Zbl

[9] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Analysis Math., 38:4 (2012), 249–289 | DOI | MR | Zbl

[10] Temlyakov V. N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Tr. MIAN SSSR, 189, 1989, 138–168

[11] Ruzhansky M., Turunen V., Pseudo-differential operators and symmetries: background analysis and advanced topics, Birkhauser Springer, Basel, 2009, 709 pp. | DOI | MR

[12] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, Moskva, 1977, 456 pp.

[13] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 448 pp.

[14] Schmeisser H. J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987, 300 pp. | MR | Zbl

[15] Bazarkhanov D.B., “Estimates for the widths of classes of periodic functions of several variables. I”, Eurasian Math. J., 1:3 (2010), 11–26 | MR | Zbl

[16] Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov dlya zadach matematicheskoi fiziki, ed. K.I. Babenko, Nauka, M., 1979, 295 pp.

[17] Novak E., Wozniakowski H., Tractability of multivariate problems, v. I, Linear information, EMS Tracts Math., Zurich, 2008 | MR | Zbl

[18] Novak E., Wozniakowski H., Tractability of multivariate problems, v. II, Standard information for functionals, EMS Tracts Math., Zurich, 2010 | MR | Zbl

[19] Novak E., Wozniakowski H., Tractability of multivariate problems, v. III, Standard information for operators, EMS Tracts Math., Zurich, 2012 | MR | Zbl

[20] Magaril - Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Mat. sb., 193:3 (2002), 79–100 | DOI | MR | Zbl

[21] Vysk N. D., Osipenko K. Yu., “Optimalnoe vosstanovlenie resheniya volnovogo uravneniya po netochnym nachalnym dannym”, Mat. zametki, 81:6 (2007), 803–815 | DOI | MR | Zbl

[22] Magaril - Ilyaev G. G., Osipenko K. Yu., “O nailuchshem garmonicheskom sinteze periodicheskikh funktsii”, Fund. i prikladnaya matematika, 18:5 (2013), 155–174

[23] Osipenko K. Yu., “Optimalnoe vosstanovlenie lineinykh operatorov v neevklidovykh metrikakh”, Mat. sb., 205:10 (2014), 77–106 | DOI | Zbl

[24] Pereverzev S. V., “O slozhnosti zadachi nakhozhdeniya reshenii uravnenii Fredgolma II roda s gladkimi yadrami. I”, Ukr. mat. zhurn., 40:1 (1988), 84–91 | MR

[25] Pereverzev S. V., “O slozhnosti zadachi nakhozhdeniya reshenii uravnenii Fredgolma II roda s gladkimi yadrami. II”, Ukr. mat. zhurn., 41:2 (1989), 189–193 | MR

[26] Pereverzev S. V., “Giperbolicheskii krest i slozhnost priblizhennogo resheniya uravnenii Fredgolma II roda s differentsiruemymi yadrami”, Sib. mat. zhurn., 32:1 (1991), 107–115 | MR | Zbl

[27] Heinrich S., “Complexity of integral equations and relation to s-numbers”, J. Complexity, 9:1 (1993), 141–153 | DOI | MR | Zbl

[28] Frank K., Heinrich S., Pereverzev S. V., “Information complexity of multivariate Fredholm integral equations in Sobolev classes”, J. Complexity, 12:1 (1996), 17–34 | DOI | MR | Zbl