On the conjugacy of the space of multipliers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A. Figà Talamanca proved (1965) that the space $M_r=M_r(G)$ of bounded linear operators in the space $L_r$, $1\le r\le\infty$, on a locally compact group $G$ that are translation invariant (more exactly, invariant under the group operation) is the conjugate space for a space $A_r=A_r(G)$, which he described constructively. In the present paper, for the space $M_r=M_r(\mathbb{R}^m)$ of multipliers of the Lebesgue space $L_r(\mathbb {R}^m)$, $1\le r\infty$, we present a Banach function space $F_r=F_r(\mathbb{R}^m)$ with two properties. The space $M_r$ is conjugate to $F_r$: $F^*_r=M_r$; actually, it is proved that $F_r$ coincides with $A_r=A_r(\mathbb{R}^m)$. The space $F_r$ is described in different terms as compared to $A_r$. This space appeared and has been used by the author since 1975 in the studies of Stechkin's problem on the best approximation of differentiation operators by bounded linear operators in the spaces $L_\gamma(\mathbb{R}^m)$, $1\le\gamma\le\infty$.
Keywords: predual space for the space of multipliers.
@article{TIMM_2019_25_4_a0,
     author = {V. V. Arestov},
     title = {On the conjugacy of the space of multipliers},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--14},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a0/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - On the conjugacy of the space of multipliers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 5
EP  - 14
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a0/
LA  - ru
ID  - TIMM_2019_25_4_a0
ER  - 
%0 Journal Article
%A V. V. Arestov
%T On the conjugacy of the space of multipliers
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 5-14
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a0/
%G ru
%F TIMM_2019_25_4_a0
V. V. Arestov. On the conjugacy of the space of multipliers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a0/

[1] Arestov V.V., “Priblizhenie operatorov tipa svertki lineinymi ogranichennymi operatorami”, Tr. MIAN, 145, 1980, 3–19 | Zbl

[2] Arestov V.V., “Nailuchshee priblizhenie neogranichennykh operatorov, invariantnykh otnositelno sdviga, lineinymi ogranichennymi operatorami”, Tr. MIAN, 198, 1992, 3–20 | Zbl

[3] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | DOI | MR | Zbl

[4] Arestov V.V., “On the best approximation of the differentiation operator”, Ural Math. J., 1:1 (2015), 20–29 | DOI | MR | Zbl

[5] Arestov V.V., “Best approximation of a differentiation operator on the set of smooth functions with exactly or approximately given Fourier transform”, Mathematical Optimization Theory and Operations Research (MOTOR 2019), Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, Cham, 2019, 434–448 | DOI

[6] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004, 896 pp.

[7] Figa-Talamanca A., “Translation invariant operators in $L^p$”, Duke. Math. J., 32 (1965), 495–502 | DOI | MR

[8] Khermander L., Otsenki dlya operatorov, invariantnykh otnositelno sdviga, Izd-vo inostr. lit., M., 1962, 71 pp.

[9] Larsen R., An introduction to the theory of multipliers, Springer, Berlin etc., 1971, 282 pp. | MR | Zbl

[10] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp.

[11] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[12] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp.