Altruistic and Aggressive Types of Behavior in a Nonzero-Sum Positional Differential Game of Three Persons
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 108-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the results of the author's previous work concerning a nonzero-sum positional differential game of two persons with different types of the players' behavior are extended to a game of three persons. For simplicity, the paradoxical type of behavior is not used by the players. The notions of altruistic and aggressive behavior types are generalized. As in the two-person game, it is assumed that each player chooses not only a positional strategy but also an indicator program function. The rules for forming controls for each triple of behavior types and the definition of a BT-solution are clarified. An example of a game with the dynamics of simple motion on a plane and a phase constraint is considered. It is assumed that the players can show altruism and aggression towards their partners, and the case of simultaneous aggression from all the players is not excluded. A description of BT-solutions of the game is given.
Keywords: nonzero-sum positional differential game, terminal payoff functionals, altruistic and aggressive behavior types, Nash equilibrium solution.
@article{TIMM_2019_25_3_a9,
     author = {A. F. Kleimenov},
     title = {Altruistic and {Aggressive} {Types} of {Behavior} in a {Nonzero-Sum} {Positional} {Differential} {Game} of {Three} {Persons}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {108--117},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a9/}
}
TY  - JOUR
AU  - A. F. Kleimenov
TI  - Altruistic and Aggressive Types of Behavior in a Nonzero-Sum Positional Differential Game of Three Persons
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 108
EP  - 117
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a9/
LA  - ru
ID  - TIMM_2019_25_3_a9
ER  - 
%0 Journal Article
%A A. F. Kleimenov
%T Altruistic and Aggressive Types of Behavior in a Nonzero-Sum Positional Differential Game of Three Persons
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 108-117
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a9/
%G ru
%F TIMM_2019_25_3_a9
A. F. Kleimenov. Altruistic and Aggressive Types of Behavior in a Nonzero-Sum Positional Differential Game of Three Persons. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 108-117. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a9/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp.

[3] Petrosyan L.A., Zenkevich N.A., Shevkoplyas E.V., Teoriya igr, BKhV-Peterburg, SPb., 2012, 432 pp.

[4] Kleimenov A.F., “Altruisticheskoe povedenie v neantagonisticheskoi pozitsionnoi differentsialnoi igre”, Matematicheskaya teoriya igr i ee prilozheniya, 7:4 (2015), 40–55 | MR | Zbl

[5] Kleimenov A.F., “Agressivnoe povedenie v neantagonisticheskoi pozitsionnoi differentsialnoi igre”, Matematicheskaya teoriya igr i ee prilozheniya, 8:4 (2016), 63–78 | MR | Zbl

[6] Kleimenov, A.F., “Altruistic and aggressive types of behavior in a non-antagonistic positional differential two-person game”, IFAC-PapersOnLine, 51:32 (2018), 219–224 | DOI | MR

[7] Kleimenov A.F., “O resheniyakh v neantagonisticheskoi pozitsionnoi differentsialnoi igre”, Prikl. matematika i mekhanika, 61:5 (1997), 739–746 | MR | Zbl

[8] Kleimenov, A.F., Kryazhimskii A.V., Normal behavior, altruism and aggression in cooperative game dynamics, Interim Report IR-98-076, IIASA, Laxenburg, 1998, 47 pp.

[9] Kleimenov A.F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 185 pp. | MR

[10] Kleimenov, A.F., “An approach to building dynamics for repeated bimatrix $2\times2$ games involving various behavior types”, Dynamic and Control, ed. G. Leitman, Gordon and Breach, London, 1998, 195–204 | MR