@article{TIMM_2019_25_3_a7,
author = {M. I. Gusev and I. O. Osipov},
title = {Asymptotic {Behavior} of {Reachable} {Sets} on {Small} {Time} {Intervals}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {86--99},
year = {2019},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a7/}
}
M. I. Gusev; I. O. Osipov. Asymptotic Behavior of Reachable Sets on Small Time Intervals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 86-99. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a7/
[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.
[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[3] Guseinov Kh.G., Nazlipinar A.S., “Attainable sets of the control system with limited resources”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 261–268
[4] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Diff. Eq. Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl
[5] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC PapersOnline, 50:1 (2017), 4082–4087 | DOI
[6] Krener A., Schättler H., “The structure of small-time reachable sets in low dimensions”, SIAM J. Control Optim., 27:1 (1989), 120–147 | DOI | MR | Zbl
[7] Schättler, H., “Small-time reachable sets and time-optimal feedback control”, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, The IMA Volumes in Mathematics and Its Applications, 78, ed. B.S. Mordukhovich, H.J. Sussmann, Springer, N Y, 1996, 203–225 | DOI | MR | Zbl
[8] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Math. Anal., 11 (2004), 255–267 | MR | Zbl
[9] Raisig G., “Vypuklost mnozhestv dostizhimosti sistem upravleniya”, Avtomatika i telemekhanika, 2007, no. 9, 64–78 | MR
[10] Goncharova E., Ovseevich A., “Small-time reachable sets of linear systems with integral control constraints: birth of the shape of a reachable set”, J. Optim. Theory Appl., 168(2) (2016), 615–624 | DOI | MR | Zbl
[11] Gusev M.I., “On convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 | DOI
[12] Polyak B.T., “Lokalnoe programmirovanie”, Zhurn. vychisl. matematiki i mat. fiziki, 41:9 (2001), 1324–1331 | MR | Zbl
[13] Gusev M.I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, 2019, 461–473 | DOI
[14] Zykov I.V., “O vneshnikh otsenkakh mnozhestv dostizhimosti upravlyaemykh sistem s integralnymi ogranicheniyami”, Izv. In-ta matematiki i informatiki UdGU, 53 (2019), 61–72 | DOI
[15] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[16] Cockayne E.J., Hall G.W.C., “Plane motion of a particle subject to curvature constraints”, SIAM J. Control, 13:1 (1975), 197–220 | DOI | MR | Zbl
[17] Berdyshev Yu.I., Nelineinye zadachi posledovatelnogo upravleniya i ikh prilozhenie, IMM UrO RAN, Ekaterinburg, 2015, 193 pp.
[18] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | Zbl