Asymptotic Behavior of Reachable Sets on Small Time Intervals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 86-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The geometric structure of small-time reachable sets plays an important role in control theory, in particular, in solving problems of local synthesis. In this paper, we consider the problem of approximate description of reachable sets on small time intervals for control-affine systems with integral quadratic constraints on the control. Using a time substitution, we replace such a set by the reachable set on a unit interval of a control system with a small parameter, which is the length of the time interval for the original system. The constraints on the control are given by a ball of small radius in the Hilbert space $\mathbb {L}_2$. Under certain conditions imposed on the controllability Gramian of the linearized system, this reachable set turns out to be convex for sufficiently small values of the parameter. We show that in this case the shape of the reachable set in the state space is asymptotically close to an ellipsoid. The proof of this fact is based on the representation of the reachable set as the image of a Hilbert ball of small radius in $\mathbb {L}_2$ under a nonlinear mapping to $\mathbb {R}^n$. In particular, this asymptotic representation holds for a fairly wide class of second-order nonlinear control systems with integral constraints. We give three examples of systems whose reachable sets demonstrate both the presence of the indicated asymptotic behavior and the absence of the latter if the necessary conditions are not satisfied.
Keywords: control system, integral constraints, reachable set, convexity, asymptotics.
@article{TIMM_2019_25_3_a7,
     author = {M. I. Gusev and I. O. Osipov},
     title = {Asymptotic {Behavior} of {Reachable} {Sets} on {Small} {Time} {Intervals}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {86--99},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a7/}
}
TY  - JOUR
AU  - M. I. Gusev
AU  - I. O. Osipov
TI  - Asymptotic Behavior of Reachable Sets on Small Time Intervals
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 86
EP  - 99
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a7/
LA  - ru
ID  - TIMM_2019_25_3_a7
ER  - 
%0 Journal Article
%A M. I. Gusev
%A I. O. Osipov
%T Asymptotic Behavior of Reachable Sets on Small Time Intervals
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 86-99
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a7/
%G ru
%F TIMM_2019_25_3_a7
M. I. Gusev; I. O. Osipov. Asymptotic Behavior of Reachable Sets on Small Time Intervals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 86-99. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a7/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[3] Guseinov Kh.G., Nazlipinar A.S., “Attainable sets of the control system with limited resources”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 261–268

[4] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Diff. Eq. Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl

[5] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC PapersOnline, 50:1 (2017), 4082–4087 | DOI

[6] Krener A., Schättler H., “The structure of small-time reachable sets in low dimensions”, SIAM J. Control Optim., 27:1 (1989), 120–147 | DOI | MR | Zbl

[7] Schättler, H., “Small-time reachable sets and time-optimal feedback control”, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, The IMA Volumes in Mathematics and Its Applications, 78, ed. B.S. Mordukhovich, H.J. Sussmann, Springer, N Y, 1996, 203–225 | DOI | MR | Zbl

[8] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Math. Anal., 11 (2004), 255–267 | MR | Zbl

[9] Raisig G., “Vypuklost mnozhestv dostizhimosti sistem upravleniya”, Avtomatika i telemekhanika, 2007, no. 9, 64–78 | MR

[10] Goncharova E., Ovseevich A., “Small-time reachable sets of linear systems with integral control constraints: birth of the shape of a reachable set”, J. Optim. Theory Appl., 168(2) (2016), 615–624 | DOI | MR | Zbl

[11] Gusev M.I., “On convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 | DOI

[12] Polyak B.T., “Lokalnoe programmirovanie”, Zhurn. vychisl. matematiki i mat. fiziki, 41:9 (2001), 1324–1331 | MR | Zbl

[13] Gusev M.I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, 2019, 461–473 | DOI

[14] Zykov I.V., “O vneshnikh otsenkakh mnozhestv dostizhimosti upravlyaemykh sistem s integralnymi ogranicheniyami”, Izv. In-ta matematiki i informatiki UdGU, 53 (2019), 61–72 | DOI

[15] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[16] Cockayne E.J., Hall G.W.C., “Plane motion of a particle subject to curvature constraints”, SIAM J. Control, 13:1 (1975), 197–220 | DOI | MR | Zbl

[17] Berdyshev Yu.I., Nelineinye zadachi posledovatelnogo upravleniya i ikh prilozhenie, IMM UrO RAN, Ekaterinburg, 2015, 193 pp.

[18] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | Zbl