@article{TIMM_2019_25_3_a6,
author = {V. V. Gorokhovik and A. S. Tykoun},
title = {Abstract {Convexity} of {Functions} with {Respect} to the {Set} of {Lipschitz} {(Concave)} {Functions}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {73--85},
year = {2019},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a6/}
}
TY - JOUR AU - V. V. Gorokhovik AU - A. S. Tykoun TI - Abstract Convexity of Functions with Respect to the Set of Lipschitz (Concave) Functions JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 73 EP - 85 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a6/ LA - ru ID - TIMM_2019_25_3_a6 ER -
V. V. Gorokhovik; A. S. Tykoun. Abstract Convexity of Functions with Respect to the Set of Lipschitz (Concave) Functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 73-85. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a6/
[1] Singer I., Abstract Convex Analysis, Wiley-Interscience Publ., N Y, 1997, 491 pp. | MR | Zbl
[2] Soltan V.P., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishinev, 1984, 223 pp.
[3] Kutateladze C.S., Rubinov A.M., “Dvoistvennost Minkovskogo i ee prilozheniya”, Uspekhi mat. nauk, 27:3(165) (1972), 127–176 | MR | Zbl
[4] Kutateladze C.S., Rubinov A.M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka. Sib. otd-nie, Novosibirsk, 1976, 254 pp. | MR
[5] Pallaschke D., Rolewicz S., Foundations of mathematical optimization (Convex analysis without linearity), Kluwer Acad. Publ., Dordrecht, 1997, 596 pp. | DOI | MR | Zbl
[6] Rubinov A.M., Abstract convexity and global optimization, Kluwer Acad. Publ., Dordrecht, 2000, 490 pp. | MR | Zbl
[7] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp.
[8] Brøndsted A., Rockafellar R.T., “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., 16:4 (1965), 605–611 | DOI | MR
[9] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp.
[10] Bishop E., Phelps R.R., “The support functionals of convex sets”, Convexity, Proc. of Symposia in Pure Mathematics, VII, ed. V. Klee, American Math. Soc., Providence, Rhode Island, 1963, 27–35 | DOI | MR
[11] Gorokhovik V.V., “O predstavlenii polunepreryvnykh sverkhu funktsii, opredelennykh na beskonechnomernykh normirovannykh prostranstvakh, v vide nizhnikh ogibayuschikh semeistv vypuklykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:1 (2017), 88–102 | DOI | MR
[12] Gorokhovik V.V., “Minimal convex majorants of functions and Demyanov–Rubinov exhaustive super(sub)differentials”, Published online: 09 Sep, Optimization. J. Math. Programming and Operations Research, 2018 | DOI | MR
[13] Gorokhovik V.V., “Demyanov–Rubinov subdifferentials of real-valued functions”, Constructive Nonsmooth Analysis and Related Topics, Dedicated to the memory of V.F. Demyanov(CNSA), ed. Polyakova, Institute of Electrical and Electronics Engineers (IEEE), Piscataway, New Jersey, 2017, 122–125, Proc. Sonf. | DOI | MR
[14] Ekeland I., “Nonconvex minimization problems”, Bull. Amer. Math. Soc., 1:3 (1979), 432–467 | DOI | MR
[15] Penot J.P., Calculus without derivatives, Springer, N Y, 2013, 524 pp. | DOI | MR | Zbl
[16] Magaril-Ilyaev G.G., Tikhomirov V.M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2003, 176 pp. | MR