On asymptotic optimization methods for quasilinear control systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 62-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Mathematical models of dynamical systems containing small parameters in nonlinearities are usually called quasilinear systems. We present a survey of results obtained for problems of optimization of quasilinear dynamical systems in the Minsk scientific school on optimal control. We consider time-optimal control problems, terminal control problems with variable right ends of trajectories, minimum force control problems, and problems of minimization of integral quadratic functionals. The research is based on the idea of a special finite-dimensional parameterization of optimal controls. The computation of asymptotic approximations to optimal controls in the quasilinear problems under consideration is reduced to solving some basic problems, which, unlike the original problems for quasilinear systems, are optimization problems for linear systems, to the integration of linear differential equations, and to finding roots of nonsingular linear algebraic systems.
Keywords: quasilinear systems, small parameter, asymptotic approximation, finite-dimensional parameterization, optimal control, feedback control.
@article{TIMM_2019_25_3_a5,
     author = {R. Gabasov and A. I. Kalinin and F. M. Kirillova and L. I. Lavrinovich},
     title = {On asymptotic optimization methods for quasilinear control systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {62--72},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a5/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - A. I. Kalinin
AU  - F. M. Kirillova
AU  - L. I. Lavrinovich
TI  - On asymptotic optimization methods for quasilinear control systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 62
EP  - 72
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a5/
LA  - ru
ID  - TIMM_2019_25_3_a5
ER  - 
%0 Journal Article
%A R. Gabasov
%A A. I. Kalinin
%A F. M. Kirillova
%A L. I. Lavrinovich
%T On asymptotic optimization methods for quasilinear control systems
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 62-72
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a5/
%G ru
%F TIMM_2019_25_3_a5
R. Gabasov; A. I. Kalinin; F. M. Kirillova; L. I. Lavrinovich. On asymptotic optimization methods for quasilinear control systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 62-72. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a5/

[8] Albrekht E.G., Metod Lyapunova-Puankare v zadachakh optimalnogo upravleniya, avtoref. dis. \ldots d-ra fiz.-mat. nauk, Sverdlovsk, 1986, 280 pp.

[9] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, Moskva, 1968, 764 pp.

[10] Van-der-Pol B., Nelineinaya teoriya elektricheskikh kolebanii, Moskva, 1935, 42 pp.

[11] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, Moskva, 1973, 272 pp.

[12] Gabasov R., Kalinin A.I., Kirillova F.M., “Algoritm optimizatsii kvazilineinoi sistemy upravleniya”, Dokl. AN SSSR, 293:1 (1987), 22–26 | MR | Zbl

[13] Gabasov R., Kirillova F.M., Osobye optimalnye upravleniya, URSS, Moskva, 2018, 256 pp.

[14] Gabasov R., Kirillova F.M., Konstruktivnye metody optimizatsii, v. 2, Zadachi upravleniya, Universitetskoe, Minsk, 1984, 207 pp.

[15] Gabasov R., Kalinin A.I., Kirillova F.M., Naumovich G.N., “Asimptoticheski optimalnyi regulyator dlya kvazilineinoi sistemy”, Dokl. RAN, 332:2 (1993), 138–141 | Zbl

[16] Gabasov R., Kirillova F.M., Kostyukova O.I., “Postroenie optimalnykh upravlenii tipa obratnoi svyazi v lineinoi zadache”, Dokl. AN SSSR, 320:6 (1991), 1294–1299

[17] Gabasov R., Kirillova F.M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, Moskva, 1971, 508 pp.

[18] Grudo Ya.O., Kalinin A.I., “Asimptoticheskii metod optimizatsii kvazilineinoi sistemy s mnogomernymi upravleniyami”, Differents. uravneniya, 42:12 (2006), 1604–1611 | MR | Zbl

[19] Grudo Ya.O., Kalinin A.I., “Asimptoticheskoe reshenie zadachi optimalnogo bystrodeistviya dlya kvazilineinoi sistemy pri evklidovom ogranichenii na upravlenie”, Avtomatika i telemekhanika, 2007, no. 8, 106–115 | Zbl

[20] Kalinin A.I., “Algoritm asimptoticheskogo resheniya singulyarno vozmuschennoi lineinoi zadachi optimalnogo bystrodeistviya”, Prikl. matematika i mekhanika, 53:6 (1989), 880–889 | MR | Zbl

[21] Kalinin A.I., Asimptoticheskie metody optimizatsii vozmuschennykh dinamicheskikh sistem, Ekoperspektiva, Minsk, 2000, 183 pp.

[22] Kalinin A.I., “Optimizatsiya kvazilineinykh sistem upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 28:3 (1988), 325–334

[23] Kalinin A.I., “Algoritm asimptoticheskogo resheniya kvazilineinoi zadachi optimalnogo bystrodeistviya”, Dokl. AN BSSR, 32:3 (1988), 197–200 | MR | Zbl

[24] Kalinin A.I., “Metod vozmuschenii dlya asimptoticheskogo resheniya kvazilineinoi zadachi optimalnogo bystrodeistviya”, Differents. uravneniya, 26:4 (1990), 585–594 | MR

[25] Kalinin A.I., “Asimptoticheskii metod resheniya kvazilineinoi zadachi ob upravlenii minimalnoi siloi”, Differents. uravneniya, 48:3 (2012), 414–424 | Zbl

[26] Kalinin A.I., “O probleme sinteza optimalnykh sistem upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 58:3 (2018), 397–402 | DOI | Zbl

[27] Kalinin A.I., Lavrinovich L.I., “Primenenie metoda vozmuschenii k zadache minimizatsii integralnogo kvadratichnogo funktsionala na traektoriyakh kvazilineinoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2014, no. 2, 3–12 | DOI | Zbl

[28] Kalinin A.I., Lavrinovich L.I., “Asimptoticheskii metod minimizatsii integralnogo kvadratichnogo funktsionala na traektoriyakh lineinoi dinamicheskoi sistemy”, Dokl. NAN Belarusi, 62:5 (2018), 519–524 | MR

[29] Kalman R., “Ob obschei teorii sistem upravleniya.”, Tr. I Kongressa IFAK, Izd-vo AN SSSR, M., 1961, 521–547

[30] Kvakernaak K.Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, Moskva, 1977, 656 pp.

[31] Kirillova F.M., “O nepreryvnoi zavisimosti reshenii odnoi zadachi optimalnogo regulirovaniya ot nachalnykh dannykh i parametrov”, Uspekhi mat. nauk, 17:4 (1962), 141–146 | MR | Zbl

[32] Kiselev Yu.N., “Asimptotika resheniya zadachi optimalnogo bystrodeistviya dlya sistem upravleniya blizkim k lineinym”, Dokl. AN SSSR, 182:1 (1968), 31–34 | Zbl

[33] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, Moskva, 1968, 476 pp.

[34] Letov A.M., Matematicheskaya teoriya protsessov upravleniya, Nauka, Moskva, 1981, 256 pp.

[35] Moiseev N.N., Elementy teorii optimalnykh sistem, Nauka, Moskva, 1975, 528 pp. | MR

[36] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 396 pp. | MR

[37] Subbotin A.I., “Ob upravlenii dvizheniem kvazilineinoi sistemy”, Differents. uravneniya, 3:7 (1967), 1113–1126 | MR

[38] Feldbaum A.A., Osnovy teorii avtomaticheskikh sistem, Nauka, Moskva, 1966, 624 pp. | MR

[39] Chernousko F.L., Akulenko L.D., Sokolov B.N., Upravlenie kolebaniyami, Nauka, Moskva, 1980, 384 pp.

[40] Falb P.L., Jong J.L., Some successive approximation methods on control and oscillation theory, Acad. Press, N Y; London, 1969, 240 pp. | MR