On a Differential Game in a Stochastic System
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 45-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class $C_0$). Solutions of the equation are represented by a stochastic variation of constants formula. Using constraints on the support functionals of sets defined by the behavior of the pursuer and the evader, we obtain conditions for the approach of the system state to a cylindrical terminal set. The results are illustrated with a model example of a simple motion in a Hilbert space with random perturbations. Applications to distributed systems described by stochastic partial differential equations are considered. By taking into account a random external influence, we consider the heat propagation process with controlled distributed heat sources and sinks.
Keywords: differential game, stochastic differential equation, Wiener process, generator of a strongly continuous semigroup, set-valued mapping, support functional, resolving functional, stochastic partial differential equation.
@article{TIMM_2019_25_3_a4,
     author = {L. A. Vlasenko and A. G. Rutkas and A. A. Chikrii},
     title = {On a {Differential} {Game} in a {Stochastic} {System}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {45--61},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a4/}
}
TY  - JOUR
AU  - L. A. Vlasenko
AU  - A. G. Rutkas
AU  - A. A. Chikrii
TI  - On a Differential Game in a Stochastic System
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 45
EP  - 61
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a4/
LA  - ru
ID  - TIMM_2019_25_3_a4
ER  - 
%0 Journal Article
%A L. A. Vlasenko
%A A. G. Rutkas
%A A. A. Chikrii
%T On a Differential Game in a Stochastic System
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 45-61
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a4/
%G ru
%F TIMM_2019_25_3_a4
L. A. Vlasenko; A. G. Rutkas; A. A. Chikrii. On a Differential Game in a Stochastic System. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 45-61. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a4/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, Moskva, 1968, 476 pp.

[2] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, Moskva, 1970, 420 pp.

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, Moskva, 1974, 456 pp. | MR

[4] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, Moskva, 1985, 516 pp.

[5] Krasovskii A.N., Krasovskii N.N., Control under lack of information, Birkhauser, Boston, 1995, 322 pp. | MR

[6] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[7] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, Moskva, 1977, 456 pp.

[8] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, Moskva, 1981, 288 pp. | MR

[9] Krasovskii N.N., “Igra sblizheniya-ukloneniya so stokhasticheskim povodyrem”, Dokl. AN SSSR, 237:5 (1977), 1020–1023 | MR

[10] Krasovskii N.N., Tretyakov V.E., “Sedlovaya tochka stokhasticheskoi differentsialnoi igry ”, Dokl. AN SSSR, 254:1 (1980), 24–27 | MR

[11] Krasovskii N.N., Tretyakov V.E., “Stokhasticheskii programmnyi sintez dlya pozitsionnoi differentsialnoi igry”, Dokl. AN SSSR, 259:3 (1981), 534–539

[12] Krasovskii N.N., “Determinirovannaya strategiya i stokhasticheskie programmy”, Prikl. matematika i mekhanika, 49:2 (1985), 179–198 | MR

[13] Krasovskii N.N., Kotelnikova A.N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 97–104 | MR

[14] Ramachandran K.M., Tsokos C.P., Stochastic differential games, Atlantis Press, Paris; Amsterdam; Beijing, 2012, 248 pp. | MR | Zbl

[15] Fleming W.H., Nisio M., “Differential games for stochastic partial differential equations”, Nagoya Math. J., 131 (1993), 75–107 | DOI | MR | Zbl

[16] Vlasenko L.A., Chikrii A.A., “The method of resolving functionals for a dynamic game in a Sobolev system”, J. Automat. Inform. Sci., 46:7 (2014), 1–11 | DOI

[17] Vlasenko L.A., Rutkas A.G., Chikrii A.A., “O differentsialnoi igre v abstraktnoi parabolicheskoi sisteme”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 26–40

[18] Chikrii A.A., Conflict-controlled processes, Kluwer Acad. Publ., Boston; London; Dordrecht, 1997, 424 pp. | MR | Zbl

[19] Chikrii A.A., “Ob odnom analiticheskom metode v dinamicheskikh igrakh sblizheniya”, Tr. MIAN, 271 (2010), 76–92 | Zbl

[20] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Inostrannaya literatura, M., 1962, 830 pp.

[21] Curtain R.F., Falb P.L., “Stochastic differential equations in Hilbert space”, J. Diff. Eq., 10:3 (1971), 412–430 | DOI | MR | Zbl

[22] Daletskii Yu.L., Fomin S.V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, Moskva, 1983, 383 pp.

[23] Da Prato G., Zabchyk J., Stochastic equations in infinite dimensions, Cambridge Univer. Press, Cambridge, 1992, 454 pp. | DOI | MR | Zbl

[24] Vlasenko L.A., Rutkas A.G., “O differentsialnoi igre v sisteme, opisyvaemoi neyavnym differentsialno-operatornym uravneniem”, Differents. uravneniya, 51:6 (2015), 785–795 | DOI | Zbl

[25] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, N Y; Berlin; Heidelberg; Tokyo, 1983, 279 pp. | DOI | MR | Zbl

[26] Vlasenko L.A., Rutkas A.G., “Stokhasticheskoe impulsnoe upravlenie parabolicheskimi sistemami tipa Soboleva”, Differents. uravneniya, 47:10 (2011), 1482–1491 | MR | Zbl

[27] Vlasenko L.A., Rutkas A.G., “Optimal control of a class of random distributed Sobolev type systems with aftereffect”, J. Automat. Inform. Sci., 45:9 (2013), 66–76 | DOI

[28] Aubin J.P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990, 461 pp. | MR | Zbl

[29] Dorogovtsev A.Ya., Ivasishen S.D., Kukush A.G., “Asimptoticheskoe povedenie reshenii uravneniya teploprovodnosti s belym shumom v pravoi chasti”, Ukr. mat. zhurn., 37:1 (1985), 13–20 | MR | Zbl

[30] Veits E., “Stokhasticheskoe uravnenie teploprovodnosti dlya statsionarnogo magistralnogo transportnogo potoka”, Teoriya veroyatnostei i ee primeneniya, 37:1 (1992), 153–156 | MR