Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 34-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a linear operator equation that does not satisfy the Hadamard well-posedness conditions. It is assumed that the solution of the equation has different smoothness properties in different regions of its domain. More exactly, the solution is representable as the sum of a smooth and discontinuous components. The Tikhonov regularization method is applied for the construction of a stable approximate solution. In this method, the stabilizer is the sum of the Lebesgue norm and the smoothed $BV$-norm. Each of the functionals in the stabilizer depends only on one component and takes into account its properties. Convergence theorems are proved for the regularized solutions and their discrete approximations. It is shown that discrete regularized solutions can be found with the use of the Newton method and nonlinear analogs of $\alpha$-processes.
Keywords: ill-posed problem, regularization method, discontinuous solution, discrete approximation.
Mots-clés : total variation
@article{TIMM_2019_25_3_a3,
     author = {V. V. Vasin and V. V. Belyaev},
     title = {Analysis of a {Regularization} {Algorithm} for a {Linear} {Operator} {Equation} {Containing} a {Discontinuous} {Component} of the {Solution}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {34--44},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/}
}
TY  - JOUR
AU  - V. V. Vasin
AU  - V. V. Belyaev
TI  - Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 34
EP  - 44
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/
LA  - ru
ID  - TIMM_2019_25_3_a3
ER  - 
%0 Journal Article
%A V. V. Vasin
%A V. V. Belyaev
%T Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 34-44
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/
%G ru
%F TIMM_2019_25_3_a3
V. V. Vasin; V. V. Belyaev. Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 34-44. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/

[1] Gholami A., Hosseini S.M., “A balanced combination of Tikhonov and total variation regularization for reconstruction of piecewise-smooth signal”, Signal Processing, 93:7 (2013), 1945–1960 | DOI

[2] Gandes E.J., Romberg J., Tao T., “Stable signal recovery from incomplete and inaccurate measurments”, Pure Appl. Math., 59:8 (2006), 1207–1223 | DOI | MR

[3] Vasin V.V., “Vosstanovlenie gladkoi i razryvnoi komponent resheniya lineinykh nekorrektnykh zadach”, Dokl. AN, 448:2 (2013), 127–130 | DOI | Zbl

[4] Vasin V.V., “Regularization of ill-posed problems by using stabilizers in the form of the total variation of a function and its derivatives”, J. Inverse Ill-Posed Problem, 24:2 (2016), 149–158 | DOI | MR | Zbl

[5] Giusti E., Minimal surfaces functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, Basel, 1984 | DOI | MR | Zbl

[6] Acar R., Vogel C.R., “Analysis of bounded variation penalty methods for ill-posed problems”, Inverse Problems, 10:6 (1994), 1217–1229 | DOI | MR | Zbl

[7] Vasin V.V., Belyaev V.V., “Approksimatsiya komponent resheniya nekorrektnykh zadach metodom Tikhonova s obobschennoi variatsiei”, Dokl. AN, 480:6 (2018), 639–643 | DOI | Zbl

[8] Vasin V.V., Belyaev V.V., “Modification of the Tikhonov method under separate reconstruction of components of solution with various properties”, Eurasian J. Math. Comput. Appl., 5:2 (2017), 66–79

[9] Vainikko G., Functionalanalysis der Diskretisierungsmethoden, Teugner Verlag, Leipzig, 1976, 136 pp. | DOI | MR

[10] Grigorieff R.D., “Zur Theorie Approximations regularer Operatoren. I; II”, Mathematische Nachrichten, 55:3 (1973), 233–249 ; 251–263 | DOI | MR | Zbl

[11] Stummel F., “Diskrete Konvergentz linearer Operatoren. I”, Mathematische Annalen, 190:1 (1970), 45–92 ; “Diskrete Konvergentz linearer Operatoren. II”, Mathematische Zeitschrift, 120:3 (1971), 231–264 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Vasin V.V., “Regularization and iterative approximation for linear ill-posed problems in the space of functions of bounded variation”, Proc. Steklov Inst. Math., Suppl. 1, 2002, 225–239 | MR

[13] Vasin V.V., Ageev A.L., Ill-posed problems with a priori information, VSP, Utrecht, The Netherlsnds, 1995, 255 pp. | MR | Zbl

[14] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.

[15] Vasin V.V., Skurydina A.F., “Two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems”, Proc. Steklov Inst. Math., 301, Suppl. 1, 2018, 173–190 | DOI | MR