Mots-clés : total variation
@article{TIMM_2019_25_3_a3,
author = {V. V. Vasin and V. V. Belyaev},
title = {Analysis of a {Regularization} {Algorithm} for a {Linear} {Operator} {Equation} {Containing} a {Discontinuous} {Component} of the {Solution}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {34--44},
year = {2019},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/}
}
TY - JOUR AU - V. V. Vasin AU - V. V. Belyaev TI - Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 34 EP - 44 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/ LA - ru ID - TIMM_2019_25_3_a3 ER -
%0 Journal Article %A V. V. Vasin %A V. V. Belyaev %T Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution %J Trudy Instituta matematiki i mehaniki %D 2019 %P 34-44 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/ %G ru %F TIMM_2019_25_3_a3
V. V. Vasin; V. V. Belyaev. Analysis of a Regularization Algorithm for a Linear Operator Equation Containing a Discontinuous Component of the Solution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 34-44. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a3/
[1] Gholami A., Hosseini S.M., “A balanced combination of Tikhonov and total variation regularization for reconstruction of piecewise-smooth signal”, Signal Processing, 93:7 (2013), 1945–1960 | DOI
[2] Gandes E.J., Romberg J., Tao T., “Stable signal recovery from incomplete and inaccurate measurments”, Pure Appl. Math., 59:8 (2006), 1207–1223 | DOI | MR
[3] Vasin V.V., “Vosstanovlenie gladkoi i razryvnoi komponent resheniya lineinykh nekorrektnykh zadach”, Dokl. AN, 448:2 (2013), 127–130 | DOI | Zbl
[4] Vasin V.V., “Regularization of ill-posed problems by using stabilizers in the form of the total variation of a function and its derivatives”, J. Inverse Ill-Posed Problem, 24:2 (2016), 149–158 | DOI | MR | Zbl
[5] Giusti E., Minimal surfaces functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, Basel, 1984 | DOI | MR | Zbl
[6] Acar R., Vogel C.R., “Analysis of bounded variation penalty methods for ill-posed problems”, Inverse Problems, 10:6 (1994), 1217–1229 | DOI | MR | Zbl
[7] Vasin V.V., Belyaev V.V., “Approksimatsiya komponent resheniya nekorrektnykh zadach metodom Tikhonova s obobschennoi variatsiei”, Dokl. AN, 480:6 (2018), 639–643 | DOI | Zbl
[8] Vasin V.V., Belyaev V.V., “Modification of the Tikhonov method under separate reconstruction of components of solution with various properties”, Eurasian J. Math. Comput. Appl., 5:2 (2017), 66–79
[9] Vainikko G., Functionalanalysis der Diskretisierungsmethoden, Teugner Verlag, Leipzig, 1976, 136 pp. | DOI | MR
[10] Grigorieff R.D., “Zur Theorie Approximations regularer Operatoren. I; II”, Mathematische Nachrichten, 55:3 (1973), 233–249 ; 251–263 | DOI | MR | Zbl
[11] Stummel F., “Diskrete Konvergentz linearer Operatoren. I”, Mathematische Annalen, 190:1 (1970), 45–92 ; “Diskrete Konvergentz linearer Operatoren. II”, Mathematische Zeitschrift, 120:3 (1971), 231–264 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Vasin V.V., “Regularization and iterative approximation for linear ill-posed problems in the space of functions of bounded variation”, Proc. Steklov Inst. Math., Suppl. 1, 2002, 225–239 | MR
[13] Vasin V.V., Ageev A.L., Ill-posed problems with a priori information, VSP, Utrecht, The Netherlsnds, 1995, 255 pp. | MR | Zbl
[14] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.
[15] Vasin V.V., Skurydina A.F., “Two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems”, Proc. Steklov Inst. Math., 301, Suppl. 1, 2018, 173–190 | DOI | MR