Algorithms for the construction of third-order local exponential splines with equidistant knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 279-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct new local exponential splines with equidistant knots corresponding to a third-order linear differential operator $\mathcal L_3(D)$ of the form $$ \mathcal L_3(D)=(D-\beta)(D-\gamma)(D-\delta)\quad (\beta,\gamma,\delta\in \mathbb R). $$ We also establish upper order estimates for the error of approximation by these splines in the uniform metric on the Sobolev class of three times differentiable functions $W_{\infty}^{\mathcal L_3}$. In particular, for the differential operator $\mathcal L_3(D)=D(D^2-\beta^2)$, we give a general scheme for the construction of local splines with additional knots, which leads in one case to known shape-preserving splines and in another case to new local interpolation splines exact on the kernel of $\mathcal L_3(D)$.
Keywords: local exponential splines, linear differential operator, approximation
Mots-clés : interpolation.
@article{TIMM_2019_25_3_a22,
     author = {V. T. Shevaldin},
     title = {Algorithms for the construction of third-order local exponential splines with equidistant knots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {279--287},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Algorithms for the construction of third-order local exponential splines with equidistant knots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 279
EP  - 287
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/
LA  - ru
ID  - TIMM_2019_25_3_a22
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Algorithms for the construction of third-order local exponential splines with equidistant knots
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 279-287
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/
%G ru
%F TIMM_2019_25_3_a22
V. T. Shevaldin. Algorithms for the construction of third-order local exponential splines with equidistant knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 279-287. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/

[1] Lyche T., Schumaker L.L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[2] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[3] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR

[4] Shevaldin V.T., Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014, 198 pp.

[5] Shevaldina E.V., “Approksimatsiya lokalnymi $\mathcal L$-splainami chetnogo poryadka, sokhranyayuschimi yadro differentsialnogo operatora”, Izv. TulGU. Estestvennye nauki, 2009, no. 2, 62–73

[6] Shevaldina E.V., “Lokalnye $\mathcal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl

[7] Subbotin Yu.N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl

[8] Kvasov B.I., “Interpolyatsiya ermitovymi parabolicheskimi splainami”, Izv. VUZov. Matematika, 1984, no. 5, 25–32 | MR

[9] Kostousov K.V., Shevaldin V.T., “Approximation by local exponential splines”, Proc. Steklov Institute Math., Suppl. 10, 2004, 147–157 | MR

[10] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164, 1983, 203–240 | MR | Zbl