Algorithms for the construction of third-order local exponential splines with equidistant knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 279-287
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct new local exponential splines with equidistant knots corresponding to a third-order linear differential operator $\mathcal L_3(D)$ of the form $$ \mathcal L_3(D)=(D-\beta)(D-\gamma)(D-\delta)\quad (\beta,\gamma,\delta\in \mathbb R). $$ We also establish upper order estimates for the error of approximation by these splines in the uniform metric on the Sobolev class of three times differentiable functions $W_{\infty}^{\mathcal L_3}$. In particular, for the differential operator $\mathcal L_3(D)=D(D^2-\beta^2)$, we give a general scheme for the construction of local splines with additional knots, which leads in one case to known shape-preserving splines and in another case to new local interpolation splines exact on the kernel of $\mathcal L_3(D)$.
Keywords:
local exponential splines, linear differential operator, approximation
Mots-clés : interpolation.
Mots-clés : interpolation.
@article{TIMM_2019_25_3_a22,
author = {V. T. Shevaldin},
title = {Algorithms for the construction of third-order local exponential splines with equidistant knots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {279--287},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/}
}
TY - JOUR AU - V. T. Shevaldin TI - Algorithms for the construction of third-order local exponential splines with equidistant knots JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 279 EP - 287 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/ LA - ru ID - TIMM_2019_25_3_a22 ER -
%0 Journal Article %A V. T. Shevaldin %T Algorithms for the construction of third-order local exponential splines with equidistant knots %J Trudy Instituta matematiki i mehaniki %D 2019 %P 279-287 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/ %G ru %F TIMM_2019_25_3_a22
V. T. Shevaldin. Algorithms for the construction of third-order local exponential splines with equidistant knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 279-287. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a22/