On a control problem under a disturbance and a possible breakdown
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 265-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear control problem is considered in the presence of an uncontrolled disturbance. It is only known that the values of the disturbance belong to a given connected compact set. The terminal time of the control process is fixed. The terminal component of the payoff depends on the modulus of a linear function of the phase variables, and the integral component is given by an integral of a power of the control. We admit the possibility of one breakdown leading to a change in the dynamics of the control process. The time of the breakdown is not known in advance. The construction of the control is based on the principle of minimizing the guaranteed result. The opponents are the disturbance and the time of the breakdown. Necessary and sufficient conditions for the optimality of an admissible control are found.
Keywords: control, disturbance, breakdown.
@article{TIMM_2019_25_3_a21,
     author = {V. I. Ukhobotov},
     title = {On a control problem under a disturbance and a possible breakdown},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {265--278},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a21/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
TI  - On a control problem under a disturbance and a possible breakdown
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 265
EP  - 278
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a21/
LA  - ru
ID  - TIMM_2019_25_3_a21
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%T On a control problem under a disturbance and a possible breakdown
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 265-278
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a21/
%G ru
%F TIMM_2019_25_3_a21
V. I. Ukhobotov. On a control problem under a disturbance and a possible breakdown. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 265-278. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a21/

[1] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.

[2] Nikolskii M.S., “Zadacha o pereprave s vozmozhnoi ostanovkoi dvigatelya”, Differents. uravneniya, 29 (1993), 1937–1940

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Aizeks R., Differentsialnye igry, Nauka, M., 1967, 479 pp.

[5] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb. Novaya seriya, 112:3 (1980), 307–330 | MR | Zbl

[6] Ukhobotov V.I., “Odnotipnye differentsialnye igry s vypukloi tselyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 196–204

[7] Ukhobotov V.I., Guschin D.V., “Odnotipnye differentsialnye igry s vypukloi integralnoi platoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 251–258 | MR | Zbl

[8] Ukhobotov V.I., “Neobkhodimye usloviya optimalnosti v lineinoi zadache upravleniya s pomekhoi i platoi, zavisyaschei ot modulya lineinoi funktsii”, Chelyabinskii fiziko-matematicheskii zhurnal, 2:1 (2017), 80–87 | MR

[9] Ukhobotov V.I., “Ob odnoi lineinoi zadache upravleniya pri nalichii pomekhi”, Vestn. YuUrGU. Ser. “Matematika. Mekhanika. Fizika”, 9:2 (2017), 36–46 | DOI | MR | Zbl

[10] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[11] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, ucheb. posobie, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2005, 124 pp.

[12] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[13] Kudryavtsev L.D., Kurs matematicheskogo analiza, v. 1, Vyssh. shk., M., 1981, 687 pp. | MR

[14] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp. | MR

[15] Riss F., Sekelfalvi–Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 587 pp.

[16] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR