A control problem for string vibrations with nonseparated conditions on the velocities of deflection points at intermediate times
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 24-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of control of string vibrations with given nonseparated values of the derivative of the deflection function at intermediate times. By the method of separation of variables, the problem is reduced to a control problem with countably many ordinary differential equations with given initial, terminal, and nonseparated multipoint intermediate conditions. We solve this problem using the methods of the theory of control of finite-dimensional systems with multipoint intermediate conditions. As an application of the proposed approach, we construct a control action for the problem of control of string vibrations with given nonseparated conditions on the values of the velocities of points of the string at two intermediate times.
Keywords: control of vibrations, string vibrations, intermediate times, nonseparated multipoint conditions.
@article{TIMM_2019_25_3_a2,
     author = {V. R. Barseghyan},
     title = {A control problem for string vibrations with nonseparated conditions on the velocities of deflection points at intermediate times},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {24--33},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a2/}
}
TY  - JOUR
AU  - V. R. Barseghyan
TI  - A control problem for string vibrations with nonseparated conditions on the velocities of deflection points at intermediate times
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 24
EP  - 33
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a2/
LA  - ru
ID  - TIMM_2019_25_3_a2
ER  - 
%0 Journal Article
%A V. R. Barseghyan
%T A control problem for string vibrations with nonseparated conditions on the velocities of deflection points at intermediate times
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 24-33
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a2/
%G ru
%F TIMM_2019_25_3_a2
V. R. Barseghyan. A control problem for string vibrations with nonseparated conditions on the velocities of deflection points at intermediate times. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 24-33. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a2/

[1] Butkovskii A.G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975, 568 pp.

[2] Sirazetdinov T.K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977, 480 pp. | MR

[3] Znamenskaya L.N., Upravlenie uprugimi kolebaniyami, Fizmatlit, M., 2004, 176 pp.

[4] Aschepkov L.T., “Optimalnoe upravlenie sistemoi s promezhutochnymi usloviyami”, Prikl. matematika i mekhanika, 45:2 (1981), 215–222 | MR

[5] Barsegyan V.R., Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami, Nauka, M., 2016, 230 pp.

[6] Barsegyan V.R., Barsegyan T.V., “Ob odnom podkhode k resheniyu zadach upravleniya dinamicheskimi sistemami s nerazdelennymi mnogotochechnymi promezhutochnymi usloviyami”, Avtomatika i telemekhanika, 2015, no. 4, 3–15

[7] Barsegyan V.R., Saakyan M.A., “Optimalnoe upravlenie kolebaniyami struny s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, Izvestiya NAN RA. Mekhanika, 61:2 (2008), 52–60 | MR

[8] Barsegyan V.R., “Ob optimalnom upravlenii kolebaniyami membrany pri fiksirovannykh promezhutochnykh sostoyaniyakh”, Uch. zapiski EGU, 1998, no. 1(188), 24–29

[9] Barsegyan V.R., “O zadache granichnogo upravleniya kolebaniyami struny s zadannymi sostoyaniyami v promezhutochnye momenty vremeni”, XI Vseros. s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, tez. dokl. (Kazan, 20–24 avgusta 2015 g.), 2015, 354–356

[10] Barsegyan V.R., “Ob odnoi zadache granichnogo optimalnogo upravleniya kolebaniyami struny s ogranicheniyami v promezhutochnye momenty vremeni”, trudy (Kazan, 13–17 iyunya 2017 g.), XI Mezhdunar. Chetaevskaya konf. “Analiticheskaya mekhanika, ustoichivost i upravlenie”, 3, no. 1, 2017, 119–125

[11] Korzyuk V.I., Kozlovskaya I.S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. I”, Tr. In-ta matematiki NAN Belarusi, 18:2 (2010), 22–35 | Zbl

[12] Korzyuk V.I., Kozlovskaya I.S., “Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoi skorostyu v nekotoryi moment vremeni. II”, Tr. In-ta matematiki NAN Belarusi, 19:1 (2011), 62–70 | MR | Zbl

[13] Makarov A.A., Levkin D.A., “Mnogotochechnaya kraevaya zadacha dlya psevdodifferentsialnykh uravnenii v polisloe”, Visnik Kharkivskogo natsionalnogo universitetu imeni V. N. Karazina. Seriya : Matematika, prikladna matematika i mekhanika, 1120:69 (2014), 64–74 | Zbl

[14] Asanova A.T., Imanchiev A.E., “O razreshimosti nelokalnoi kraevoi zadachi dlya nagruzhennykh giperbolicheskikh uravnenii s mnogotochechnymi usloviyami”, Vestn. Karagand. un-ta. Seriya Matematika, 2016, no. 1(81), 15–20

[15] Bakirova E.A., Kadirbaeva Zh.M., “O razreshimosti lineinoi mnogotochechnoi kraevoi zadachi dlya nagruzhennykh differentsialnykh uravnenii”, Izv. HAH PK. Sep. fiz.-mat., 2016, no. 5, 168–175

[16] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[17] Zubov V.I., Lektsii po teorii upravleniya, Nauka, M., 1975, 496 pp.