@article{TIMM_2019_25_3_a18,
author = {T. V. Seregina and A. A. Ivashko and V. V. Mazalov},
title = {Optimal stopping strategies in the game {{\textquotedblleft}The} {Price} {Is} {Right{\textquotedblright}}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {217--231},
year = {2019},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a18/}
}
TY - JOUR AU - T. V. Seregina AU - A. A. Ivashko AU - V. V. Mazalov TI - Optimal stopping strategies in the game “The Price Is Right” JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 217 EP - 231 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a18/ LA - ru ID - TIMM_2019_25_3_a18 ER -
T. V. Seregina; A. A. Ivashko; V. V. Mazalov. Optimal stopping strategies in the game “The Price Is Right”. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 217-231. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a18/
[1] Alpern S., Katrantzi I., Ramsey D., “Partnership formation with age-dependent preferences”, European J. Operational Research, 225:1 (2013), 91–99 | DOI | MR | Zbl
[2] Bennett R.W., Hickman K.A., “Rationality and the “Price is Right””, J. Economic Behavior Organization, 21:1 (1993), 99–105 | DOI
[3] Berk J., Hughson E., Vandezande K., “The Price is Right, but are the bids? An investigation of rational decision theory”, The American Economic Review, 86:4 (1996), 954–970
[4] Bruss F.T., Ferguson T.S., “Multiple buying or selling with vector offers”, J. Appl. Probability, 34:4 (1997), 959–973 | DOI | MR | Zbl
[5] Chow Y.S., Robbins H., Siegmund D., Great expectations: The theory of optimal stopping, Houghton Mifflin, Boston, 1971, 139 pp. | MR | Zbl
[6] Coe P.R., Butterworth W., “Optimal stopping in “The Showcase Showdown””, The American Statistician, 49:3 (1995), 271–275 | DOI | MR
[7] Kaynar B., “Optimal stopping in a stochastic game”, Probability in the Engineering and Informational Sciences, 23 (2009), 51–60 | DOI | MR | Zbl
[8] Krasnosielska-Kobos A., “Construction of Nash equilibrium based on multiple stopping problem in multi-person game”, Math. Methods Oper. Research, 83:1 (2016), 53–70 | DOI | MR | Zbl
[9] Mazalov V.V., Ivashko A.A., “Equilibrium in $n$-person game of showcase showdown”, Probability in the Engineering and Informational Sciences, 24:3 (2010), 397–403 | DOI | MR | Zbl
[10] Ramsey D.M., “A model of a 2-player stopping game with priority and asynchronous observation”, Math. Methods Oper. Research, 66:1 (2007), 149–164 | DOI | MR | Zbl
[11] Sakaguchi M., “Equilibrium in two-player games of “Showcase Showdown””, Scientiae Mathematicae Japonicae, 61 (2005), 145–151 | MR | Zbl
[12] Sakaguchi M., “Players information in two-player games of “Score Showdown””, Game Theory Appl., 11 (2007), 111–124 | MR
[13] Sofronov G., “An optimal sequential procedure for a multiple selling problem with independent observations”, European J. Oper. Research, 225:2 (2013), 332–336 | DOI | MR | Zbl
[14] Solan E., Vieille N., “Quitting games”, Math. Oper. Research, 2:26 (2001), 265–285 | DOI | MR | Zbl
[15] Szajowski K., Tamaki M., “Shelf life of candidates in the generalized secretary problem”, Oper. Research Letters, 44:4 (2016), 498–502 | DOI | MR | Zbl
[16] Tenorio R., Cason T.N., “To spin or not to spin? Natural and laboratory experiments from “The Price is Right””, The Economic J., 112:476 (2002), 170–195 | DOI
[17] Tijms H.C., Understanding probability, 2 edn, Cambridge University Press, Cambridge, 2007, 452 pp. | MR | Zbl