Coalitional stability conditions in multicriteria dynamic games
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 200-216
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the stability of coalitions in multicriteria dynamic games. We use the Nash bargaining solution (Nash products) to construct a noncooperative equilibrium and the Nash bargaining solution for the entire planning horizon to find a cooperative solution. Conditions for the internal and external stability are extended to dynamic games with vector payoff functions. The notion of coalitional stability, which takes into account the stimuli for the player to transfer to other coalitions, is introduced. To illustrate the presented approach, we consider a multicriteria dynamic model of bioresource management. Conditions for the internal, external, and coalitional stability are presented.
Keywords: dynamic games, Nash bargaining solution, internal and external stability, coalitional stability.
Mots-clés : multicriteria games
@article{TIMM_2019_25_3_a17,
     author = {A. N. Rettieva},
     title = {Coalitional stability conditions in multicriteria dynamic games},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {200--216},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a17/}
}
TY  - JOUR
AU  - A. N. Rettieva
TI  - Coalitional stability conditions in multicriteria dynamic games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 200
EP  - 216
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a17/
LA  - ru
ID  - TIMM_2019_25_3_a17
ER  - 
%0 Journal Article
%A A. N. Rettieva
%T Coalitional stability conditions in multicriteria dynamic games
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 200-216
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a17/
%G ru
%F TIMM_2019_25_3_a17
A. N. Rettieva. Coalitional stability conditions in multicriteria dynamic games. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 200-216. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a17/

[1] Shapley L.S., “Equilibrium points in games with vector payoffs”, Naval Research Logistic Quarterly, 6:1 (1959), 57–61 | DOI | MR

[2] Voorneveld M., Grahn S., Dufwenberg M., “Ideal equilibria in noncooperative multicriteria games”, Math. Met. Oper. Res., 52:1 (2000), 65–77 | DOI | MR | Zbl

[3] Pusillo L., Tijs S., “E-equilibria for multicriteria games”, Annals ISDG, 12 (2013), 217–228 | DOI | MR

[4] Rettieva A.N., “Multicriteria dynamic games”, International Game Theory Review, 19:1 (2017), 1750002 | DOI | MR | Zbl

[5] Rettieva A.N., “Dynamic multicriteria games with finite horizon”, Mathematics, 6:9 (2018), 156 | DOI | Zbl

[6] Rettieva A.N., “Formirovanie koalitsii v dinamicheskikh mnogokriterialnykh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 10:2 (2018), 40–61 | DOI | MR | Zbl

[7] D'Aspremont C. et al., “On the stability of collusive price leadership”, Can. J. Econ., 16:1 (1983), 17–25 | DOI

[8] Carraro C., “The structure of international environmental agreements”, FEEM/IPCC/Stanford EMF Conf. “International Environmental Agreements on Climate Change”, Paper Presented, Venice, 1997, 309–328

[9] Rettieva A., “Coalition stability in dynamic multicriteria games”, Intern. Conf. on Mathematical Optimization Theory and Operations Research (MOTOR 2019): Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, Cham, 2019, 697–714 | DOI

[10] Rettieva A.N., “Stable coalition structure in Bioresource management problem”, Ecological Modelling, 235–236 (2012), 102–118 | DOI

[11] De Zeeuw A., “Dynamic effects on stability of international environmental agreements”, J. Environmental Economics and Management, 55:2 (2008), 163–174 | DOI | Zbl