Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 188-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of pursuing a group of evaders by a group of pursuers with equal capabilities of all the participants is considered in a finite-dimensional Euclidean space. The system is described by the equation $$ D^{(\alpha)}z_{ij}=az_{ij}+u_i-v_j, \ \ u_i, v_j \in V, $$ where $D^{(\alpha)}f$ is the Caputo fractional derivative of order $\alpha$ of the function $f$, the set of admissible controls $V$ is strictly convex and compact, and $a$ is a real number. The aim of the group of pursuers is to capture at least $q$ evaders; each evader must be captured by at least $r$ different pursuers, and the capture moments may be different. The terminal set is the origin. Assuming that the evaders use program strategies and each pursuer captures at most one evader, we obtain sufficient conditions for the solvability of the pursuit problem in terms of the initial positions. Using the method of resolving functions as a basic research tool, we derive sufficient conditions for the solvability of the approach problem with one evader at some guaranteed instant. Hall's theorem on a system of distinct representatives is used in the proof of the main theorem.
Keywords: differential game, group pursuit, multiple capture, pursuer, evader, fractional derivative.
@article{TIMM_2019_25_3_a16,
     author = {N. N. Petrov and A. Ya. Narmanov},
     title = {Multiple {Capture} of a {Given} {Number} of {Evaders} in a {Problem} with {Fractional} {Derivatives} and a {Simple} {Matrix}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {188--199},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - A. Ya. Narmanov
TI  - Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 188
EP  - 199
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/
LA  - ru
ID  - TIMM_2019_25_3_a16
ER  - 
%0 Journal Article
%A N. N. Petrov
%A A. Ya. Narmanov
%T Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 188-199
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/
%G ru
%F TIMM_2019_25_3_a16
N. N. Petrov; A. Ya. Narmanov. Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 188-199. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Chikrii A.A., Konfliktno upravlyamye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[3] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[4] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.

[5] Eidelman S.D., Chikrii A.A., “Dinamicheskie zadachi sblizheniya dlya uravnenii drobnogo poryadka”, Ukr. mat. zhurn., 52:11 (2000), 1566–1583 | MR | Zbl

[6] Chikrii A.A., Matichin I.I., “Igrovye zadachi dlya lineinykh sistem drobnogo poryadka”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 262–278

[7] Pshenichnyi B.N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[8] Grigorenko N.L., “Igra prostogo presledovaniya-ubeganiya gruppy presledovatelei i odnogo ubegayuschego”, Vestn. MGU. Ser. vychislit. matematika i kibernetika, 1983, no. 1, 41–47 | Zbl

[9] Petrov N.N., Prokopenko V.A., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Differents. uravneniya, 23:4 (1987), 724–726

[10] Sakharov D.V., “O dvukh differentsialnykh igrakh prostogo gruppovogo presledovaniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 1, 50–59 | Zbl

[11] Blagodatskikh A.I., “Odnovremennaya mnogokratnaya poimka v zadache prostogo presledovaniya”, Prikl. matematika i mekhanika, 73:1 (2009), 54–59 | MR | Zbl

[12] Petrov N.N., “Mnogokratnaya poimka v primere L. S. Pontryagina s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 61:5 (1997), 747–754 | MR | Zbl

[13] Petrov N.N., Soloveva N.A., “Mnogokratnaya poimka v rekurrentnom primere L. S. Pontryagina ”, Avtomatika i telemekhanika, 2016, no. 5, 128–135 | Zbl

[14] Blagodatskikh A.I., “Odnovremennaya mnogokratnaya poimka v konfliktno upravlyaemom protsesse ”, Prikl. matematika i mekhanika, 77:3 (2013), 433–440 | MR | Zbl

[15] Petrov N.N., “Mnogokratnaya poimka v odnoi zadache gruppovogo presledovaniya s drobnymi proizvodnymi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:1 (2018), 156–164 | MR

[16] Petrov N.N., Soloveva N.A., “K zadache gruppovogo presledovaniya v lineinykh rekurrentnykh differentsialnykh igrakh”, Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 132 (2016), 81–85

[17] Petrov N.N., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Avtomatika i telemekhanika, 1996, no. 6, 48–54 | Zbl

[18] Petrov N.N., Narmanov A.Ya., “Mnogokratnaya poimka zadannogo chisla ubegayuschikh v zadache prostogo presledovaniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 28:2 (2018), 193–198 | MR | Zbl

[19] Caputo M., “Linear model of dissipation whose $q$ is almost frequency independent-II”, Geophys. R. Astr. Soc., 1967, no. 13, 529–539 | DOI

[20] Chikrii A.A., Matichin I.I., “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Dopovidi Natsionalnoi akademii nauk Ukraini, 2007, no. 1, 50–55 | Zbl

[21] Dzhrbashyan M.M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[22] Popov A.Yu., Sedletskii A.M., “Raspredelenie kornei funktsii Mittag — Lefflera”, Sovremennaya matematika. Fundamentalnye napravleniya, 40 (2011), 3–171

[23] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR