Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 188-199

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of pursuing a group of evaders by a group of pursuers with equal capabilities of all the participants is considered in a finite-dimensional Euclidean space. The system is described by the equation $$ D^{(\alpha)}z_{ij}=az_{ij}+u_i-v_j, \ \ u_i, v_j \in V, $$ where $D^{(\alpha)}f$ is the Caputo fractional derivative of order $\alpha$ of the function $f$, the set of admissible controls $V$ is strictly convex and compact, and $a$ is a real number. The aim of the group of pursuers is to capture at least $q$ evaders; each evader must be captured by at least $r$ different pursuers, and the capture moments may be different. The terminal set is the origin. Assuming that the evaders use program strategies and each pursuer captures at most one evader, we obtain sufficient conditions for the solvability of the pursuit problem in terms of the initial positions. Using the method of resolving functions as a basic research tool, we derive sufficient conditions for the solvability of the approach problem with one evader at some guaranteed instant. Hall's theorem on a system of distinct representatives is used in the proof of the main theorem.
Keywords: differential game, group pursuit, multiple capture, pursuer, evader, fractional derivative.
@article{TIMM_2019_25_3_a16,
     author = {N. N. Petrov and A. Ya. Narmanov},
     title = {Multiple {Capture} of a {Given} {Number} of {Evaders} in a {Problem} with {Fractional} {Derivatives} and a {Simple} {Matrix}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {188--199},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/}
}
TY  - JOUR
AU  - N. N. Petrov
AU  - A. Ya. Narmanov
TI  - Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 188
EP  - 199
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/
LA  - ru
ID  - TIMM_2019_25_3_a16
ER  - 
%0 Journal Article
%A N. N. Petrov
%A A. Ya. Narmanov
%T Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 188-199
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/
%G ru
%F TIMM_2019_25_3_a16
N. N. Petrov; A. Ya. Narmanov. Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 188-199. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a16/