The structure of the reachable set for the Dubins car with a strictly one-sided turn
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 171-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the structure of a three-dimensional reachable set “at instant” of the nonlinear control system often called the “Dubins car.” A controlled vehicle moves in the plane with constant speed and bounded turning radius. We consider the case where the object can turn to one side only and the rectilinear motion is forbidden by given control constraints. Based on the Pontryagin maximum principle, we obtain variants of controls leading to the boundary of the reachable set. Sections of the three-dimensional reachable set along the angular coordinate are considered. The boundaries of such sections are described analytically in the form of sets of smooth arcs. The paper lists all possible options for the structure of the sections. Each arc is defined by a certain type of piecewise constant control satisfying the maximum principle. The strict convexity of the sections along the angular coordinate is proved, and the smoothness of the boundary of the sections is analyzed.
Mots-clés : Dubins car
Keywords: strictly one-sided turn, structure of a three-dimensional reachable set, Pontryagin maximum principle, piecewise constant control, strict convexity of sections of a reachable set along the angular coordinate.
@article{TIMM_2019_25_3_a15,
     author = {V. S. Patsko and A. A. Fedotov},
     title = {The structure of the reachable set for the {Dubins} car with a strictly one-sided turn},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {171--187},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a15/}
}
TY  - JOUR
AU  - V. S. Patsko
AU  - A. A. Fedotov
TI  - The structure of the reachable set for the Dubins car with a strictly one-sided turn
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 171
EP  - 187
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a15/
LA  - ru
ID  - TIMM_2019_25_3_a15
ER  - 
%0 Journal Article
%A V. S. Patsko
%A A. A. Fedotov
%T The structure of the reachable set for the Dubins car with a strictly one-sided turn
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 171-187
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a15/
%G ru
%F TIMM_2019_25_3_a15
V. S. Patsko; A. A. Fedotov. The structure of the reachable set for the Dubins car with a strictly one-sided turn. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 171-187. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a15/

[1] Dubins L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, American J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl

[2] Robot motion planning and control, Lecture Notes in Control and Information Sciences, 229, ed. Laumond J.-P., Springer-Verlag, Berlin; Heidelberg, 1998, 354 pp. | MR

[3] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya RAN. TiSU, 2003, no. 3, 8–16 | Zbl

[4] Fedotov A., Patsko V., Turova V., “Reachable sets for simple models of car motion”, Recent Advances in Mobile Robotics, ed. A. V. Topalov, InTech, Rijeka, Croatia, 2011, 147–172 | DOI

[5] Patsko V.S., Fedotov A.A., “Investigation of reachable set at instant for the Dubins' car”, Proc. 58th Israel Annual Conf. Aerospace Sci. (Tel-Aviv Haifa, 2018), Haifa, 2018, 1655–1669 | MR

[6] Choi H., Time-optimal paths for a Dubins car and Dubins airplane with a unidirectional turning constraint, Dissertation for the degree of Doctor of Philosophy, University of Michigan, Michigan, 2014, 134 pp.

[7] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp. | MR

[8] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[9] Patsko V.S., Fedotov A.A., “Attainability set at instant for one-side turning Dubins car”, Proc. 17th IFAC Workshop Control Appl. Optim., Yekaterinburg, 2018, 201–206 | DOI