Estimation of Reachable Sets from Above with Respect to Inclusion for Some Nonlinear Control Systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 163-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The study of reachable sets of controlled objects is an important research area in optimal control theory. Such sets describe in a rough form the dynamical possibilities of the objects, which is important for theory and applications. Many optimization problems for controlled objects use the reachable set $D(T)$ in their statements. In the study of properties of controlled objects, it is useful to have some constructive estimates of $D(T)$ from above with respect to inclusion. In particular, such estimates are helpful for the approximate calculation of $D(T)$ by the pixel method. In this paper, we consider two nonlinear models of direct regulation known in the theory of absolute stability with a control term added to the right-hand side of the corresponding system of differential equations. To obtain the required upper estimates with respect to inclusion, we use Lyapunov functions from the theory of absolute stability. Note that the upper estimates for $D(T)$ are obtained in the form of balls in the phase space centered at the origin.
Keywords: reachable set, Lyapunov function, absolute stability, direct regulation.
@article{TIMM_2019_25_3_a14,
     author = {M. S. Nikol'skii},
     title = {Estimation of {Reachable} {Sets} from {Above} with {Respect} to {Inclusion} for {Some} {Nonlinear} {Control} {Systems}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {163--170},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a14/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - Estimation of Reachable Sets from Above with Respect to Inclusion for Some Nonlinear Control Systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 163
EP  - 170
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a14/
LA  - ru
ID  - TIMM_2019_25_3_a14
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T Estimation of Reachable Sets from Above with Respect to Inclusion for Some Nonlinear Control Systems
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 163-170
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a14/
%G ru
%F TIMM_2019_25_3_a14
M. S. Nikol'skii. Estimation of Reachable Sets from Above with Respect to Inclusion for Some Nonlinear Control Systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 163-170. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a14/

[1] Aizerman M.A., Gantmakher F.R., Absolyutnaya ustoichivost reguliruemykh sistem, Izd-vo AN SSSR, Moskva, 1963, 140 pp.

[2] Barbashin E.A., Funktsii Lyapunova, Nauka, Moskva, 1970, 240 pp. | MR

[3] Gusev M.I., “O vneshnikh otsenkakh mnozhestv dostizhimosti nelineinykh upravlyaemykh ob'ektov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 60–69 | MR | Zbl

[4] Nikolskii M.S., “Ob otsenivanii mnozhestva dostizhimosti dlya nekotorykh upravlyaemykh ob'ektov”, Mezhdunar. konf., posvyasch. 110-letiyu so dnya rozhdeniya L. S. Pontryagina, sb. tr., Moskva, 2018, 194–196

[5] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, Moskva, 1959, 212 pp.

[6] La-Sall Zh., Lefshets S., Issledovanie ustoichivosti pryamym metodom Lyapunova, Mir, Moskva, 1964, 168 pp.

[7] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, Moskva, 1972, 576 pp.

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, Moskva, 1970, 720 pp.

[9] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, Moskva, 1969, 384 pp. | MR

[10] Rapoport L.B., “O zadache absolyutnoi ustoichivosti sistem upravleniya s neskolkimi nelineinymi statsionarnymi elementami”, Avtomatika i telemekhanika, 1987, no. 5, 66–74 | Zbl

[11] Pontryagin L.S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1965, 332 pp.