On the construction and estimates of the Cauchy matrix for systems with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 153-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear functional differential system with aftereffect of general form is considered. Basic relations that define the Cauchy matrix — the kernel of integral representation to solutions of the Cauchy problem — are presented. The role of the Cauchy matrix in the study of a wide range of problems in the theory of functional differential systems, including control problems with respect to a given system of objective functionals and boundary value problems with general boundary conditions, is indicated. The efficiency of solving these problems depends essentially on the possibility of constructing a sufficiently exact approximation to the Cauchy matrix of the system. We propose an approach to the approximate construction of the Cauchy matrix that combines iterative procedures and algorithms for the construction of a rather accurate initial approximation based on a special approximation of parameters of the system. Error estimates are established for the resulting approximations.
Keywords: linear systems with aftereffect, representation of solutions
Mots-clés : Cauchy matrix.
@article{TIMM_2019_25_3_a13,
     author = {V. P. Maksimov},
     title = {On the construction and estimates of the {Cauchy} matrix for systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--162},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - On the construction and estimates of the Cauchy matrix for systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 153
EP  - 162
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/
LA  - ru
ID  - TIMM_2019_25_3_a13
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T On the construction and estimates of the Cauchy matrix for systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 153-162
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/
%G ru
%F TIMM_2019_25_3_a13
V. P. Maksimov. On the construction and estimates of the Cauchy matrix for systems with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 153-162. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/

[1] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M, 1985, 520 pp.

[2] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR

[3] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii, Izd-vo In-ta kompyuternykh issledovanii, Moskva, 2002, 384 pp. | MR

[4] Maksimov V.P., “O formule Koshi dlya funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 13:4 (1977), 601–606 | MR | Zbl

[5] Maksimov V.P., Voprosy obschei teorii funktsionalno-differentsialnykh uravnenii, PGU, PSI, PSSGK, Perm, 2003, 306 pp.

[6] Chadov A.L., Maksimov V.P., “Linear boundary value problems and control problems for a class of functional differential equations with continuous and discrete times”, Functional Differential Equations, 19:1–2 (2012), 49–62 | MR | Zbl

[7] Tyshkevich V.A., Nekotorye voprosy teorii ustoichivosti funktsionalno-differentsialnykh uravnenii, Naukova dumka, Kiev, 1981, 80 pp.

[8] Maksimov V.P., “On the property of controllability with respect to a family of linear functionals”, Functional Differential Equations, 16:3 (2009), 517–527 | MR | Zbl

[9] Maksimov V.P., Munembe J.S.P., “On the question of enclosing solutions of linear functional differential systems”, Mem. Differential Equations Math. Phys., 12 (1997), 149–156 | MR | Zbl

[10] Simonov P.M., “Ob odnom metode issledovaniya dinamicheskikh modelei makroekonomiki”, Vestn. Perm. un-ta. Ser. Ekonomika, 2014, no. 1, 14–27 | MR

[11] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M, 1983, 432 pp.

[12] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[13] Maksimov V.P., “On a class of optimal control problems for functional differential systems”, Proc. Steklov Inst. Math., 305, suppl. 1, 2019, 114–124 | DOI | MR