On the construction and estimates of the Cauchy matrix for systems with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 153-162

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear functional differential system with aftereffect of general form is considered. Basic relations that define the Cauchy matrix — the kernel of integral representation to solutions of the Cauchy problem — are presented. The role of the Cauchy matrix in the study of a wide range of problems in the theory of functional differential systems, including control problems with respect to a given system of objective functionals and boundary value problems with general boundary conditions, is indicated. The efficiency of solving these problems depends essentially on the possibility of constructing a sufficiently exact approximation to the Cauchy matrix of the system. We propose an approach to the approximate construction of the Cauchy matrix that combines iterative procedures and algorithms for the construction of a rather accurate initial approximation based on a special approximation of parameters of the system. Error estimates are established for the resulting approximations.
Keywords: linear systems with aftereffect, representation of solutions
Mots-clés : Cauchy matrix.
@article{TIMM_2019_25_3_a13,
     author = {V. P. Maksimov},
     title = {On the construction and estimates of the {Cauchy} matrix for systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--162},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - On the construction and estimates of the Cauchy matrix for systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 153
EP  - 162
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/
LA  - ru
ID  - TIMM_2019_25_3_a13
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T On the construction and estimates of the Cauchy matrix for systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 153-162
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/
%G ru
%F TIMM_2019_25_3_a13
V. P. Maksimov. On the construction and estimates of the Cauchy matrix for systems with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 153-162. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a13/