On the definition of uniform complete observability
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 129-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classical definitions of uniform complete controllability and uniform complete observability were formulated by R. Kalman for systems with coefficients from the class $L^{\rm loc}_2({\mathbb R})$. E. L. Tonkov proposed alternative dual definitions for systems with bounded measurable coefficients. For the theory of control of asymptotic invariants of differential systems, it is useful to study the properties of uniform complete controllability and observability for systems with arbitrary coefficients. We propose a definition of uniform complete observability on an arbitrarily given family of closed intervals of the real axis under the assumption that some spaces of controls and measured outputs of the system are defined on each of the intervals. Here we do not impose any constraints on the system apart from the requirement of the existence of solutions, their uniqueness, and extendability to the whole real axis. Some basic properties of the introduced notions are given. It is established that, in the general case, uniform complete controllability and uniform complete observability are not dual properties for linear systems. Sufficient conditions for the presence of such a duality are obtained. Similar results are formulated for the pair “identifiability — reachability.”
Keywords: linear systems, uniform complete observability, uniform complete controllability.
@article{TIMM_2019_25_3_a11,
     author = {E. K. Makarov and S. N. Popova},
     title = {On the definition of uniform complete observability},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--140},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a11/}
}
TY  - JOUR
AU  - E. K. Makarov
AU  - S. N. Popova
TI  - On the definition of uniform complete observability
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 129
EP  - 140
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a11/
LA  - ru
ID  - TIMM_2019_25_3_a11
ER  - 
%0 Journal Article
%A E. K. Makarov
%A S. N. Popova
%T On the definition of uniform complete observability
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 129-140
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a11/
%G ru
%F TIMM_2019_25_3_a11
E. K. Makarov; S. N. Popova. On the definition of uniform complete observability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 129-140. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a11/

[1] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR

[2] Gaishun I.V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Institut matematiki NAN Belarusi, Minsk, 1999, 409 pp.

[3] Kalman R.E., “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematisa Mexicana, 5:1 (1960), 102–119 | MR | Zbl

[4] Makarov E.K., Popova S.N., “Ob opredelenii ravnomernoi polnoi upravlyaemosti”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 27:3 (2017), 326–343 | DOI | MR | Zbl

[5] Makarov E.K., Popova S.N., Upravlyaemost asimptoticheskikh invariantov nestatsionarnykh lineinykh sistem, Belarus. navuka, Minsk, 2012, 407 pp.

[6] Popova S.N., Zadachi upravleniya pokazatelyami Lyapunova, dis. ...kand. fiz.-mat. nauk: 01.01.02, Izhevsk, 1992, 103 pp.

[7] Zaitsev V.A., “Kriterii ravnomernoi polnoi upravlyaemosti lineinoi sistemy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 25:2 (2015), 157–179 | DOI | Zbl

[8] Tonkov E.L., “Kriterii ravnomernoi upravlyaemosti i stabilizatsiya lineinoi rekurrentnoi sistemy”, Differents. uravneniya, 15:10 (1979), 1804–1813 | MR | Zbl

[9] Vasilev V.V., Tonkov E.L., “Kriterii ravnomernoi polnoi nablyudaemosti lineinoi predelno rekurrentnoi sistemy”, Problemy sovremennoi teorii periodicheskikh dvizhenii, 4, Izhevsk, 1980, 39–42

[10] Tonkov E.L., K teorii lineinykh upravlyaemykh sistem, Izd-vo UdGU, Izhevsk, 2018, 228 pp.