On the Theory of Positional Differential Games for Neutral-Type Systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 118-128
Voir la notice de l'article provenant de la source Math-Net.Ru
For a dynamical system whose motion is described by neutral-type differential equations in Hale's form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric constraints. The game is formalized in classes of pure positional strategies with a memory of the motion history. It is proved that the game has a value and a saddle point. The proof is based on the choice of an appropriate Lyapunov–Krasovskii functional for the construction of control strategies by the method of an extremal shift to accompanying points.
Keywords:
neutral-type systems, control theory, differential games.
@article{TIMM_2019_25_3_a10,
author = {N. Yu. Lukoyanov and A. R. Plaksin},
title = {On the {Theory} of {Positional} {Differential} {Games} for {Neutral-Type} {Systems}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {118--128},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/}
}
TY - JOUR AU - N. Yu. Lukoyanov AU - A. R. Plaksin TI - On the Theory of Positional Differential Games for Neutral-Type Systems JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 118 EP - 128 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/ LA - ru ID - TIMM_2019_25_3_a10 ER -
N. Yu. Lukoyanov; A. R. Plaksin. On the Theory of Positional Differential Games for Neutral-Type Systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 118-128. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/