On the Theory of Positional Differential Games for Neutral-Type Systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 118-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a dynamical system whose motion is described by neutral-type differential equations in Hale's form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric constraints. The game is formalized in classes of pure positional strategies with a memory of the motion history. It is proved that the game has a value and a saddle point. The proof is based on the choice of an appropriate Lyapunov–Krasovskii functional for the construction of control strategies by the method of an extremal shift to accompanying points.
Keywords: neutral-type systems, control theory, differential games.
@article{TIMM_2019_25_3_a10,
     author = {N. Yu. Lukoyanov and A. R. Plaksin},
     title = {On the {Theory} of {Positional} {Differential} {Games} for {Neutral-Type} {Systems}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {118--128},
     year = {2019},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - On the Theory of Positional Differential Games for Neutral-Type Systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 118
EP  - 128
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/
LA  - ru
ID  - TIMM_2019_25_3_a10
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T On the Theory of Positional Differential Games for Neutral-Type Systems
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 118-128
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/
%G ru
%F TIMM_2019_25_3_a10
N. Yu. Lukoyanov; A. R. Plaksin. On the Theory of Positional Differential Games for Neutral-Type Systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 3, pp. 118-128. http://geodesic.mathdoc.fr/item/TIMM_2019_25_3_a10/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Osipov Yu.S., “K teorii differentsialnykh igr sistem s posledeistviem”, Prikl. matematika i mekhanika, 35:2 (1971), 300–311 | Zbl

[3] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp.

[4] Hale J., Theory of functional differential Equations, Springer-Verlag, N Y, 1977 | MR | Zbl

[5] Lukoyanov N.Yu., Plaksin A.R., “Differentsialnye igry dlya sistem neitralnogo tipa: approksimiruyuschaya model”, Tr. MIAN, 291, 2015, 202–214 | DOI | MR | Zbl

[6] Gomoyunov M.I., Lukoyanov N.Yu., Plaksin A.R., “Suschestvovanie tseny i sedlovoi tochki v pozitsionnykh differentsialnykh igrakh dlya sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 101–112 | DOI

[7] Gomoyunov M.I., Plaksin A.R., “Ob osnovnom uravnenii differentsialnykh igr dlya sistem neitralnogo tipa”, Prikl. matematika i mekhanika, 82:6 (2018), 675–689 | DOI

[8] Gomoyunov M.I., Lukoyanov N.Yu., “On the numerical solution of differential games for neutral-type linear systems”, Proc. Steklov Inst. Math., 301, suppl. 1, 2018, 44–56 | DOI | MR

[9] Kryazhimskii A.V., “Ob ustoichivom pozitsionnom upravlenii v differentsialnykh igrakh”, Prikl. matematika i mekhanika, 42:6 (1978), 963–968 | MR

[10] Maksimov V.I., “Differentsialnaya igra navedeniya dlya sistem s otklonyayuschimsya argumentom neitralnogo tipa”, Zadachi dinamicheskogo upravleniya, cb. st., UNTs AN SSSR, 1981, 33–45

[11] Krasovskii N.N., “O primenenii vtorogo metoda A. M. Lyapunova dlya uravnenii s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 20:3 (1956), 315–327

[12] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp.

[13] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 225 pp. | MR

[14] Lukoyanov N.Yu., Funktsionalnye uravneniya Gamiltona — Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo Ural. federal. un-ta, Ekaterinburg, 2011, 243 pp.