Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 88-101
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper continues the authors' previous studies. We consider a time-optimal control problem for a singularly perturbed linear autonomous system with two independent small parameters and smooth geometric constraints on the control in the form of a ball
$$ \left\{\begin{array}{llll} \phantom{\varepsilon^3}\dot{x}=y,\, x,\,y\in \mathbb{R}^{2},\quad u\in \mathbb{R}^{2},\\[1ex]
\varepsilon^3\dot{y}=Jy+u,\,\|u\|\le 1,\quad 0\varepsilon,\mu\ll 1,\\[1ex] x(0)=x_0(\varepsilon,\mu)=(x_{0,1}, \varepsilon^3\mu\xi)^*,\quad y(0)=y_0,\\[1ex]
x(T_{(\varepsilon,\mu})=0,\quad y(T_{(\varepsilon,\mu})=0,\quad T_{(\varepsilon,\mu} \to \min, \end{array} \right. $$
where \vspace{-1mm} $$ J=\left(\begin{array}{rr} 01 \\ 00\end{array}\right). $$
The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix $J$ at the fast variables is the second-order Jordan block with zero eigenvalue and, thus, does not satisfy the standard asymptotic stability condition. Continuing the research, we consider initial conditions depending on the second small parameter $\mu$. We derive and justify a complete asymptotic expansion in the sense of Erdelyi of the optimal time and optimal control with respect to the asymptotic sequence $\varepsilon^\gamma(\varepsilon^k+\mu^k)$, $0\gamma1$.
Keywords:
optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
@article{TIMM_2019_25_2_a8,
author = {A. R. Danilin and O. O. Kovrizhnykh},
title = {Asymptotics of the {Solution} to a {Singularly} {Perturbed} {Time-Optimal} {Control} {Problem} with {Two} {Small} {Parameters}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {88--101},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/}
}
TY - JOUR AU - A. R. Danilin AU - O. O. Kovrizhnykh TI - Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 88 EP - 101 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/ LA - ru ID - TIMM_2019_25_2_a8 ER -
%0 Journal Article %A A. R. Danilin %A O. O. Kovrizhnykh %T Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters %J Trudy Instituta matematiki i mehaniki %D 2019 %P 88-101 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/ %G ru %F TIMM_2019_25_2_a8
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 88-101. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/