Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 88-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper continues the authors' previous studies. We consider a time-optimal control problem for a singularly perturbed linear autonomous system with two independent small parameters and smooth geometric constraints on the control in the form of a ball $$ \left\{\begin{array}{llll} \phantom{\varepsilon^3}\dot{x}=y,\, x,\,y\in \mathbb{R}^{2},\quad u\in \mathbb{R}^{2},\\[1ex] \varepsilon^3\dot{y}=Jy+u,\,\|u\|\le 1,\quad 0\varepsilon,\mu\ll 1,\\[1ex] x(0)=x_0(\varepsilon,\mu)=(x_{0,1}, \varepsilon^3\mu\xi)^*,\quad y(0)=y_0,\\[1ex] x(T_{(\varepsilon,\mu})=0,\quad y(T_{(\varepsilon,\mu})=0,\quad T_{(\varepsilon,\mu} \to \min, \end{array} \right. $$ where \vspace{-1mm} $$ J=\left(\begin{array}{rr} 01 \\ 00\end{array}\right). $$ The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix $J$ at the fast variables is the second-order Jordan block with zero eigenvalue and, thus, does not satisfy the standard asymptotic stability condition. Continuing the research, we consider initial conditions depending on the second small parameter $\mu$. We derive and justify a complete asymptotic expansion in the sense of Erdelyi of the optimal time and optimal control with respect to the asymptotic sequence $\varepsilon^\gamma(\varepsilon^k+\mu^k)$, $0\gamma1$.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
@article{TIMM_2019_25_2_a8,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of the {Solution} to a {Singularly} {Perturbed} {Time-Optimal} {Control} {Problem} with {Two} {Small} {Parameters}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {88--101},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 88
EP  - 101
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/
LA  - ru
ID  - TIMM_2019_25_2_a8
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 88-101
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/
%G ru
%F TIMM_2019_25_2_a8
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 88-101. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a8/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp.

[2] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[3] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[4] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp.

[5] Gichev T.R., Donchev A.L., “Skhodimost resheniya lineinoi singulyarno vozmuschennoi zadachi bystrodeistviya”, Prikl. matematika i mekhanika, 43:3 (1979), 466–474 | MR | Zbl

[6] Danilin A.R., Ilin A.M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[7] Danilin A.R., Parysheva Yu.V., “Asimptotika optimalnogo znacheniya funktsionala kachestva v lineinoi zadache optimalnogo upravleniya”, Dokl. AN, 427:2 (2009), 151–154 | Zbl

[8] Shaburov A.A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i gladkimi geometricheskimi ogranicheniyami na upravlenie”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 50:2 (2017), 110–120 | MR | Zbl

[9] Danilin A.R., Kovrizhnykh O.O., “O zavisimosti zadachi bystrodeistviya dlya lineinoi sistemy ot dvukh malykh parametrov”, Matematika, mekhanika, informatika, v. 14, Vest. ChelGU, 27, 2011, 46–60

[10] Danilin A.R., Kovrizhnykh O.O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. AN, 451:6 (2013), 612–614 | DOI | Zbl

[11] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[12] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR

[13] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[14] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka. Gl. red. fiz.-mat. lit., M., 1984, 752 pp.