Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 75-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the exact constant in the Nikol'skii–Bernstein inequality $\|Df\|_{q}\le C\|f\|_{p}$ on the subspace of entire functions $f$ of exponential spherical type in the space $L^{p}(\mathbb{R}^{d})$ with a power-type weight $v_{\kappa}$. For the differential operator $D$, we take a nonnegative integer power of the Dunkl Laplacian $\Delta_{\kappa}$ associated with the weight $v_{\kappa}$. This situation encompasses the one-dimensional case of the space $L^{p}(\mathbb{R}_{+})$ with the power weight $t^{2\alpha+1}$ and Bessel differential operator. Our main result consists in the proof of an equality between the multidimensional and one-dimensional weighted constants for $1\le p\le q=\infty$. For this, we show that the norm $\|Df\|_{\infty}$ can be replaced by the value $Df(0)$, which was known only in the one-dimensional case. The required mapping of the subspace of functions, which actually reduces the problem to the radial and, hence, one-dimensional case, is implemented by means of the positive operator of Dunkl generalized translation $T_{\kappa}^{t}$. We prove its new property of analytic continuation in the variable $t$. As a consequence, we calculate the weighted Bernstein constant for $p=q=\infty$, which was known in exceptional cases only. We also find some estimates of the constants and give a short list of open problems.
Keywords:
Nikol'skii–Bernstein inequality, entire function of exponential spherical type, power-type weight, Dunkl Laplacian.
Mots-clés : exact constant
Mots-clés : exact constant
@article{TIMM_2019_25_2_a7,
author = {D. V. Gorbachev and V. I. Ivanov},
title = {Nikol'skii--Bernstein {Constants} for {Entire} {Functions} of {Exponential} {Spherical} {Type} in {Weighted} {Spaces}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {75--87},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/}
}
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov TI - Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 75 EP - 87 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/ LA - ru ID - TIMM_2019_25_2_a7 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %T Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces %J Trudy Instituta matematiki i mehaniki %D 2019 %P 75-87 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/ %G ru %F TIMM_2019_25_2_a7
D. V. Gorbachev; V. I. Ivanov. Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/