Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 75-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the exact constant in the Nikol'skii–Bernstein inequality $\|Df\|_{q}\le C\|f\|_{p}$ on the subspace of entire functions $f$ of exponential spherical type in the space $L^{p}(\mathbb{R}^{d})$ with a power-type weight $v_{\kappa}$. For the differential operator $D$, we take a nonnegative integer power of the Dunkl Laplacian $\Delta_{\kappa}$ associated with the weight $v_{\kappa}$. This situation encompasses the one-dimensional case of the space $L^{p}(\mathbb{R}_{+})$ with the power weight $t^{2\alpha+1}$ and Bessel differential operator. Our main result consists in the proof of an equality between the multidimensional and one-dimensional weighted constants for $1\le p\le q=\infty$. For this, we show that the norm $\|Df\|_{\infty}$ can be replaced by the value $Df(0)$, which was known only in the one-dimensional case. The required mapping of the subspace of functions, which actually reduces the problem to the radial and, hence, one-dimensional case, is implemented by means of the positive operator of Dunkl generalized translation $T_{\kappa}^{t}$. We prove its new property of analytic continuation in the variable $t$. As a consequence, we calculate the weighted Bernstein constant for $p=q=\infty$, which was known in exceptional cases only. We also find some estimates of the constants and give a short list of open problems.
Keywords: Nikol'skii–Bernstein inequality, entire function of exponential spherical type, power-type weight, Dunkl Laplacian.
Mots-clés : exact constant
@article{TIMM_2019_25_2_a7,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Nikol'skii--Bernstein {Constants} for {Entire} {Functions} of {Exponential} {Spherical} {Type} in {Weighted} {Spaces}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 75
EP  - 87
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/
LA  - ru
ID  - TIMM_2019_25_2_a7
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 75-87
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/
%G ru
%F TIMM_2019_25_2_a7
D. V. Gorbachev; V. I. Ivanov. Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/