Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 75-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the exact constant in the Nikol'skii–Bernstein inequality $\|Df\|_{q}\le C\|f\|_{p}$ on the subspace of entire functions $f$ of exponential spherical type in the space $L^{p}(\mathbb{R}^{d})$ with a power-type weight $v_{\kappa}$. For the differential operator $D$, we take a nonnegative integer power of the Dunkl Laplacian $\Delta_{\kappa}$ associated with the weight $v_{\kappa}$. This situation encompasses the one-dimensional case of the space $L^{p}(\mathbb{R}_{+})$ with the power weight $t^{2\alpha+1}$ and Bessel differential operator. Our main result consists in the proof of an equality between the multidimensional and one-dimensional weighted constants for $1\le p\le q=\infty$. For this, we show that the norm $\|Df\|_{\infty}$ can be replaced by the value $Df(0)$, which was known only in the one-dimensional case. The required mapping of the subspace of functions, which actually reduces the problem to the radial and, hence, one-dimensional case, is implemented by means of the positive operator of Dunkl generalized translation $T_{\kappa}^{t}$. We prove its new property of analytic continuation in the variable $t$. As a consequence, we calculate the weighted Bernstein constant for $p=q=\infty$, which was known in exceptional cases only. We also find some estimates of the constants and give a short list of open problems.
Keywords: Nikol'skii–Bernstein inequality, entire function of exponential spherical type, power-type weight, Dunkl Laplacian.
Mots-clés : exact constant
@article{TIMM_2019_25_2_a7,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Nikol'skii{\textendash}Bernstein {Constants} for {Entire} {Functions} of {Exponential} {Spherical} {Type} in {Weighted} {Spaces}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {75--87},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 75
EP  - 87
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/
LA  - ru
ID  - TIMM_2019_25_2_a7
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 75-87
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/
%G ru
%F TIMM_2019_25_2_a7
D. V. Gorbachev; V. I. Ivanov. Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a7/

[1] Arestov V.V., “O neravenstvakh S.N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN SSSR, 246:6 (1979), 1289–1292 | MR | Zbl

[2] Arestov V.V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zametki, 27:4 (1980), 539–547 | MR | Zbl

[3] Arestov V., Babenko A., Deikalova M., Horvath A., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[4] Dai F., Gorbachev D., Tikhonov S., Nikolskii constants for polynomials on the unit sphere, 2017, 21 pp., arXiv: 1708.0983

[5] Ganzburg M., Sharp constants of approximation theory. I. Multivariate Bernstein-Nikolskii type inequalities, 2019, 19 pp., arXiv: 1901.04400

[6] Ganzburg M.I., Tikhonov S.Yu., “On sharp constants in Bernstein-Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl

[7] Gorbachev D.V., Dobrovolskii N.N., “Konstanty Nikolskogo v prostranstvakh $L^{p}(\mathbb{R},|x|^{2\alpha+1},dx)$”, Chebyshevskii sb., 19:2 (2018), 67–79 | DOI | MR

[8] Gorbachev D.V., Martyanov I.A., “O vzaimosvyazi konstant Nikolskogo dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 19:2 (2018), 80–89 | DOI | MR

[9] Gorbachev D.V., Ivanov V.I., Tikhonov S.Y., “Positive $L^{p}$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 2018, 1–51 | DOI | MR

[10] Gorbachev D.V., Ivanov V.I., Fractional smoothness in $L^{p}$ with Dunkl weight and its applications, 2018, 28 pp., arXiv: 1812.04946 | MR

[11] Ivanov V.A., “Tochnye rezultaty v zadache o neravenstve Bernshteina - Nikolskogo na kompaktnykh simmetricheskikh rimanovykh prostranstvakh ranga 1”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam, sb. tr., v. 14, Tr. MIAN SSSR, 194, Nauka, M., 1992, 111–119

[12] de Jeu M.F.E., “Paley-Wiener theorems for the Dunkl transform”, Trans. Amer. Math. Soc., 358 (2006), 4225–4250 | DOI | MR | Zbl

[13] Kamzolov A.I., “Ob interpolyatsionnoi formule Rissa i neravenstve Bernshteina dlya funktsii na odnorodnykh prostranstvakh”, Mat. zametki, 15:6 (1974), 967–978 | MR | Zbl

[14] Mejjaoli H., Trimeche K., “On a mean value property associated with the Dunkl Laplacian operator and applications”, Integral Transform. Spec. Funct., 12 (2001), 279–302 | DOI | MR | Zbl

[15] Levin E., Lubinsky D., “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15 (2015), 459–468 | DOI | MR | Zbl

[16] Nessel R., Wilmes G., “Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc., 25:1 (1978), 7–18 | DOI | MR | Zbl

[17] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, Moskva, 1977, 480 pp.

[18] Platonov S.S., “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matematicheskaya, 71:5 (2007), 149–196 | DOI | MR | Zbl

[19] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355 (2003), 2413–2438 | DOI | MR | Zbl