Convergence of Quartic Interpolating Splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 67-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of interpolation by quartic splines according to Marsden's scheme is considered. It is shown that the calculation of an interpolating spline in terms of the coefficients of expansion of its second derivative in $L_1$-normalized quadratic B-splines yields a system of linear equations for the chosen parameters. The matrix of the system is pentadiagonal and has a column diagonal dominance, which makes it possible to efficiently calculate the required parameters and establish the convergence of the spline interpolation process according to Marsden's scheme for any function from the class $C^1$ on an arbitrary sequence of grids without any constraints. In Marsden's scheme, it is assumed that a knot grid is given and the interpolation nodes are chosen strictly in the middle. The established results are transferred to the case of interpolation by quartic splines according to Subbotin's scheme (the data grid and knot grid are swapped). Here the system of equations for the coefficients of expansion of the third derivative in $L_\infty$-normalized B-splines has a diagonal dominance, and the interpolation process converges for any interpolated function from the class $C^3$.
Mots-clés : quartic splines, interpolation, convergence
Keywords: diagonally dominant matrices.
@article{TIMM_2019_25_2_a6,
     author = {Yu. S. Volkov},
     title = {Convergence of {Quartic} {Interpolating} {Splines}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--74},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a6/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Convergence of Quartic Interpolating Splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 67
EP  - 74
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a6/
LA  - ru
ID  - TIMM_2019_25_2_a6
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Convergence of Quartic Interpolating Splines
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 67-74
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a6/
%G ru
%F TIMM_2019_25_2_a6
Yu. S. Volkov. Convergence of Quartic Interpolating Splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 67-74. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a6/

[1] Ahlberg J. H., Nilson E. N., Walsh J. L., “Best approximation and convergence properties of higher-order spline approximations”, J. Math. Mech., 14:2 (1965), 231–243 | MR | Zbl

[2] Ahlberg J. H., Nilson E. N., Walsh J. L., The theory of splines and their applications, Acad. Press, N Y, 1967, 284 pp. | MR | Zbl

[3] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR

[4] Boor C. de., A practical guide to splines, Springer, N Y, 1978, 392 pp. | MR | Zbl

[5] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[6] Boor C. de., “On the convergence of odd-degree spline interpolation”, J. Approxim. Theory, 1:4 (1968), 452–463 | DOI | MR | Zbl

[7] Volkov Yu. S., “Vpolne neotritsatelnye matritsy v metodakh postroeniya interpolyatsionnykh splainov nechetnoi stepeni”, Mat. trudy, 7:2 (2004), 3–34

[8] Volkov Yu. S., “Interpolyatsiya splainami chetnoi stepeni po Subbotinu i po Marsdenu”, Ukr. mat. zhurn., 66:7 (2014), 891–908 | Zbl

[9] Ahlberg J. H., Nilson E. N., “Convergence properties of the spline fit”, J. Soc. Indust. Appl. Math., 11:1 (1963), 95–104 | DOI | MR | Zbl

[10] Subbotin Yu. N., “O kusochno-polinomialnoi interpolyatsii”, Mat. zametki, 1:1 (1967), 63–70 | MR | Zbl

[11] Marsden M. J., “Quadratic spline interpolation”, Bull. Amer. Math. Soc., 80:5 (1974), 903–906 | DOI | MR | Zbl

[12] Volkov Yu. S., “Neobkhodimye usloviya ravnomernoi skhodimosti interpolyatsionnykh splainov chetvertoi i pyatoi stepenei”, Vychisl. sistemy, 93, Metody splain-funktsii, IM SO AN SSSR, Novosibirsk, 1982, 30–38