Conditions of absolute cesaro summability of multiple trigonometric Fourier series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 42-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A necessary and sufficient condition of absolute $|C;\overline{\beta}|_\lambda$-summability almost everywhere on ${\mathbb T}^s$ is obtained for multiple trigonometric Fourier series of functions $f\in L_{\overline{q}}({\mathbb T}^s)$ from generalized Besov classes $B_{\overline q,s,\theta}^{\omega_r}$, where ${\mathbb T}^s=[0,2\pi)^s$, $\overline{\beta}=(\beta_1,\beta_2,\ldots,\beta_s)$, $\overline{q}=(q_1,q_2,\ldots, q_s)$, $1$, $\overline{1,s}$, $1\le \lambda\le q_s\le \ldots\le q_1$, $\lambda\theta\infty$, $0\le \beta_j1/q'_j=1-1/q_j$, $\overline{1,s}$, $r\in \mathbb{N}$, $r>\sum_{j=1}^s(1/q_j-\beta_j)$, and $\omega_r$ is a function of the type of modulus of smoothness of order $r$.
Keywords: multiple trigonometric Fourier series, absolute summability, modulus of smoothness, generalized Besov class.
@article{TIMM_2019_25_2_a4,
     author = {S. Bitimkhan},
     title = {Conditions of absolute cesaro summability of multiple trigonometric {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {42--47},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a4/}
}
TY  - JOUR
AU  - S. Bitimkhan
TI  - Conditions of absolute cesaro summability of multiple trigonometric Fourier series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 42
EP  - 47
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a4/
LA  - ru
ID  - TIMM_2019_25_2_a4
ER  - 
%0 Journal Article
%A S. Bitimkhan
%T Conditions of absolute cesaro summability of multiple trigonometric Fourier series
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 42-47
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a4/
%G ru
%F TIMM_2019_25_2_a4
S. Bitimkhan. Conditions of absolute cesaro summability of multiple trigonometric Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 42-47. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a4/

[1] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960, 624 pp.

[2] Timan M.F., “Ob absolyutnoi skhodimosti i summiruemosti ryadov Fure”, Soobscheniya AN Gruzinskoi SSR, 26:6 (1961), 641–646 | Zbl

[3] Ponomarenko Yu.A., “Nekotorye kriterii absolyutnoi chezarovskoi summiruemosti kratnykh ryadov Fure”, Dokl. AN SSSR, 152:6 (1963), 1305–1307 | Zbl

[4] Ponomarenko Yu.A., Timan M.F., “Ob absolyutnoi summiruemosti kratnykh ryadov Fure”, Ukr. mat. zhurn., 23:3 (1971), 346–361 | Zbl

[5] Salai I., “Ob absolyutnoi summiruemosti trigonometricheskikh ryadov”, Mat. zametki, 30:6 (1981), 823–837 | MR

[6] Timan M.F., Ponomarenko Yu.A., “Nekotorye kriterii absolyutnoi summiruemosti ryadov Fure”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, sb. tr., Izd-vo AN Azerb. SSR, Baku, 1965, 489–492

[7] Goldman M.L., “O vlozhenii obobschennykh gelderovykh klassov”, Mat. zametki, 12:3 (1972), 325–336

[8] Akishev G.A., Bitimkhanuly S., “Moduli gladkosti i absolyutnaya summiruemost kratnykh trigonometricheskikh ryadov”, Mat. zhurn. Almaty, 3:1 (7) (2003), 5–14 | MR | Zbl

[9] Bitimkhan S., Akishev G., “The conditions of absolute summability of multiple trigonometric series”, AIP Conf. Proc., 1676:1 (2015), 020095 | DOI

[10] Ulyanov P.L., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Mat. sb., 72 (114):2 (1967), 193–225

[11] Bitimkhanuly S., “Uslovie absolyutnoi summiruemosti kratnykh trigonometricheskikh ryadov”, Vestn. KazGU. Ser.: matematika, mekhanika, informatika, 2001, no. 1 (24), 3–11