Keywords: singular integral, approximation, discrete Hilbert transform.
@article{TIMM_2019_25_2_a3,
author = {R. A. Aliev and Ch. A. Gadjieva},
title = {On the approximation of the {Hilbert} transform},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {30--41},
year = {2019},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/}
}
R. A. Aliev; Ch. A. Gadjieva. On the approximation of the Hilbert transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 30-41. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/
[1] Riesz M., “Sur les fonctions conjuguees”, Math. Zeit., 27:1 (1928), 218–244 | DOI | MR
[2] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp.
[3] Kolmogoroff A., “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fund. Math., 7:1 (1925), 24–29 | DOI | Zbl
[4] Lifanov I.K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995, 520 pp.
[5] Boikov I.V., Priblizhennye metody resheniya singulyarnykh integralnykh uravnenii, Penzenskii Gosudarstvennyi Universitet, Penza, 2004, 297 pp. | MR
[6] Aliev R.A., “Novyi konstruktivnyi metod resheniya singulyarnykh integralnykh uravnenii”, Mat. zametki, 79:6 (2006), 803–824 | DOI
[7] Ermolaeva L.B., “Reshenie singulyarnykh integralnykh uravnenii metodom ostsilliruyuschikh funktsii”, Izv. vuzov. Matematika, 12 (2009), 28–35 | Zbl
[8] Aliev R.A., Amrakhova A.F., “Konstruktivnyi metod resheniya singulyarnykh integralnykh uravnenii s yadrom Gilberta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 14–25
[9] Kress V.R., Martensen E., “Anwendung der rechteckregel auf die reelle Hilbert transformation mit unendlichem interval”, Z. Angew. Math. Mech., 50 (1970), 61–64 | DOI | MR
[10] Bialecki B., “Sinc quadratures for Cauchy principal value integrals”, Numerical Integration, Recent Developments, Software and Applications, NATO ASI Ser., Ser. C: Math. Phys. Sci., 357, eds. T. O. Espelid and A. Genz, Kluwer Acad. Publ., Dordrecht, 1997 | DOI | MR
[11] Stenger F., “Approximations via Whittaker's cardinal function”, J. Approx. Theory, 17:3 (1976), 222–240 | DOI | MR | Zbl
[12] Stenger F., “Numerical methods based on Whittaker cardinal or Sinc functions”, SIAM Review, 23:2 (1981), 165–224 | DOI | MR | Zbl
[13] Stenger F., Numerical methods based on Sinc and analytic functions, Springer Ser. in Comput. Math., 20, Springer-Verlag, NY, 1993, 565 pp. | DOI | MR | Zbl
[14] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176:2 (1973), 227–251 | DOI | MR | Zbl
[15] Aliev R.A., Amrahova A.F., “On the summability of the discrete Hilbert transform”, Ural Math. J., 4:2 (2018), 6–12 | DOI | MR
[16] Andersen K.F., “Inequalities with weights for discrete Hilbert transforms”, Canad. Math. Bull., 20:1 (1977), 9–16 | DOI | MR | Zbl
[17] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR