On the approximation of the Hilbert transform
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 30-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the approximation of the Hilbert transform $\left(Hu\right)\left(t\right)=\displaystyle\frac{1}{\pi } \int _{R}\displaystyle\frac{u\left(\tau \right)}{t-\tau } d\tau $ of functions $u\in L_{2} \left(R\right)$ by operators of the form $(H_{\delta}u)(t)=\displaystyle\frac{1}{\pi}\sum_{k=-\infty}^{\infty}\displaystyle \frac{u(t+(k+1/2)\delta)}{-k-1/2}$,  $\delta >0$. The main results are the following statements. $\bf{Theorem~1.}$  For any $\delta >0$ the operators $H_{\delta } $ are bounded in the space $L_{p} \left(R\right)$, $1$, and $$\left\| H_{\delta } \right\| _{L_{p} \left(R\right)\to L_{p} \left(R\right)} \le \left\| \tilde{h}\right\| _{l_{p} \to l_{p} },$$ where $\tilde{h}$ is the modified discrete Hilbert transform defined by the equality  $$ \widetilde{h}(b)=\big\{(\widetilde{h}(b))_{n}\big\}_{n\in \mathbb Z},\quad  \big(\widetilde{h}(b)\big)_{n}=\sum_{m\in \mathbb Z}\frac{b_{m}}{n-m-1/2},\quad n\in \mathbb Z,\quad b=\{b_{n}\}_{n\in \mathbb Z} \in l_{1}. $$ $\bf {Theorem~2.}$  For any $\delta >0$ and $u\in L_{p} \left(R\right)$, $1$, the following inequality holds: $$H_{\delta } \left(H_{\delta } u\right)\left(t\right)=-u\left(t\right).$$ $\bf {Theorem~3.}$  For any $\delta >0$ the sequence of operators $\{H_{\delta/n}\}_{n\in \mathbb N}$  strongly converges to the operator $H$ in $L_{2} \left(R\right)$; i.e., the following inequality holds for any $u\in L_{2} \left(R\right)$: $$ \lim\limits_{n\to \infty}\|H_{\delta/n} u-Hu\|_{L_{2}(R)}=0. $$
Mots-clés : Hilbert transform
Keywords: singular integral, approximation, discrete Hilbert transform.
@article{TIMM_2019_25_2_a3,
     author = {R. A. Aliev and Ch. A. Gadjieva},
     title = {On the approximation of the {Hilbert} transform},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--41},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/}
}
TY  - JOUR
AU  - R. A. Aliev
AU  - Ch. A. Gadjieva
TI  - On the approximation of the Hilbert transform
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 30
EP  - 41
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/
LA  - ru
ID  - TIMM_2019_25_2_a3
ER  - 
%0 Journal Article
%A R. A. Aliev
%A Ch. A. Gadjieva
%T On the approximation of the Hilbert transform
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 30-41
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/
%G ru
%F TIMM_2019_25_2_a3
R. A. Aliev; Ch. A. Gadjieva. On the approximation of the Hilbert transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 30-41. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/