On the approximation of the Hilbert transform
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 30-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is devoted to the approximation of the Hilbert transform $\left(Hu\right)\left(t\right)=\displaystyle\frac{1}{\pi } \int _{R}\displaystyle\frac{u\left(\tau \right)}{t-\tau } d\tau $ of functions $u\in L_{2} \left(R\right)$ by operators of the form $(H_{\delta}u)(t)=\displaystyle\frac{1}{\pi}\sum_{k=-\infty}^{\infty}\displaystyle \frac{u(t+(k+1/2)\delta)}{-k-1/2}$, $\delta >0$. The main results are the following statements. $\bf{Theorem~1.}$ For any $\delta >0$ the operators $H_{\delta } $ are bounded in the space $L_{p} \left(R\right)$, $1$, and $$\left\| H_{\delta } \right\| _{L_{p} \left(R\right)\to L_{p} \left(R\right)} \le \left\| \tilde{h}\right\| _{l_{p} \to l_{p} },$$ where $\tilde{h}$ is the modified discrete Hilbert transform defined by the equality $$ \widetilde{h}(b)=\big\{(\widetilde{h}(b))_{n}\big\}_{n\in \mathbb Z},\quad \big(\widetilde{h}(b)\big)_{n}=\sum_{m\in \mathbb Z}\frac{b_{m}}{n-m-1/2},\quad n\in \mathbb Z,\quad b=\{b_{n}\}_{n\in \mathbb Z} \in l_{1}. $$ $\bf {Theorem~2.}$ For any $\delta >0$ and $u\in L_{p} \left(R\right)$, $1$, the following inequality holds: $$H_{\delta } \left(H_{\delta } u\right)\left(t\right)=-u\left(t\right).$$ $\bf {Theorem~3.}$ For any $\delta >0$ the sequence of operators $\{H_{\delta/n}\}_{n\in \mathbb N}$ strongly converges to the operator $H$ in $L_{2} \left(R\right)$; i.e., the following inequality holds for any $u\in L_{2} \left(R\right)$: $$ \lim\limits_{n\to \infty}\|H_{\delta/n} u-Hu\|_{L_{2}(R)}=0. $$
Mots-clés : Hilbert transform
Keywords: singular integral, approximation, discrete Hilbert transform.
@article{TIMM_2019_25_2_a3,
     author = {R. A. Aliev and Ch. A. Gadjieva},
     title = {On the approximation of the {Hilbert} transform},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--41},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/}
}
TY  - JOUR
AU  - R. A. Aliev
AU  - Ch. A. Gadjieva
TI  - On the approximation of the Hilbert transform
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 30
EP  - 41
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/
LA  - ru
ID  - TIMM_2019_25_2_a3
ER  - 
%0 Journal Article
%A R. A. Aliev
%A Ch. A. Gadjieva
%T On the approximation of the Hilbert transform
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 30-41
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/
%G ru
%F TIMM_2019_25_2_a3
R. A. Aliev; Ch. A. Gadjieva. On the approximation of the Hilbert transform. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 30-41. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a3/

[1] Riesz M., “Sur les fonctions conjuguees”, Math. Zeit., 27:1 (1928), 218–244 | DOI | MR

[2] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp.

[3] Kolmogoroff A., “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fund. Math., 7:1 (1925), 24–29 | DOI | Zbl

[4] Lifanov I.K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995, 520 pp.

[5] Boikov I.V., Priblizhennye metody resheniya singulyarnykh integralnykh uravnenii, Penzenskii Gosudarstvennyi Universitet, Penza, 2004, 297 pp. | MR

[6] Aliev R.A., “Novyi konstruktivnyi metod resheniya singulyarnykh integralnykh uravnenii”, Mat. zametki, 79:6 (2006), 803–824 | DOI

[7] Ermolaeva L.B., “Reshenie singulyarnykh integralnykh uravnenii metodom ostsilliruyuschikh funktsii”, Izv. vuzov. Matematika, 12 (2009), 28–35 | Zbl

[8] Aliev R.A., Amrakhova A.F., “Konstruktivnyi metod resheniya singulyarnykh integralnykh uravnenii s yadrom Gilberta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 14–25

[9] Kress V.R., Martensen E., “Anwendung der rechteckregel auf die reelle Hilbert transformation mit unendlichem interval”, Z. Angew. Math. Mech., 50 (1970), 61–64 | DOI | MR

[10] Bialecki B., “Sinc quadratures for Cauchy principal value integrals”, Numerical Integration, Recent Developments, Software and Applications, NATO ASI Ser., Ser. C: Math. Phys. Sci., 357, eds. T. O. Espelid and A. Genz, Kluwer Acad. Publ., Dordrecht, 1997 | DOI | MR

[11] Stenger F., “Approximations via Whittaker's cardinal function”, J. Approx. Theory, 17:3 (1976), 222–240 | DOI | MR | Zbl

[12] Stenger F., “Numerical methods based on Whittaker cardinal or Sinc functions”, SIAM Review, 23:2 (1981), 165–224 | DOI | MR | Zbl

[13] Stenger F., Numerical methods based on Sinc and analytic functions, Springer Ser. in Comput. Math., 20, Springer-Verlag, NY, 1993, 565 pp. | DOI | MR | Zbl

[14] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176:2 (1973), 227–251 | DOI | MR | Zbl

[15] Aliev R.A., Amrahova A.F., “On the summability of the discrete Hilbert transform”, Ural Math. J., 4:2 (2018), 6–12 | DOI | MR

[16] Andersen K.F., “Inequalities with weights for discrete Hilbert transforms”, Canad. Math. Bull., 20:1 (1977), 9–16 | DOI | MR | Zbl

[17] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR