Polyhedral complementarity on a simplex. method of meeting paths for decreasing quasi-regular mappings
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 273-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper explores the mathematical basis of a novel polyhedral complementarity approach proposed by the author for finding an economic equilibrium in a linear exchange model and its variations. The equilibrium problem reduces to finding fixed points of point-to-set mappings of the price simplex to itself. As a result, we obtain a polyhedral complementarity problem generated by a pair of polyhedral complexes in duality. The class of quasi-regular mappings, which is a new class of decreasing mappings having no analogs in $\mathbb{R}^n$, is considered. The procedure of meeting paths, which generalizes the known Lemke method for linear complementarity problems, is studied. It is shown that in the case under consideration the procedure has the property of monotonicity characteristic of linear complementarity problems with positive principal minors of the constraint matrix (P-class). The uniqueness of the desired fixed point is a consequence of monotonicity.
Mots-clés : simplex
Keywords: polyhedral complex, complementarity, monotonicity, fixed point, algorithm.
@article{TIMM_2019_25_2_a23,
     author = {V. I. Shmyrev},
     title = {Polyhedral complementarity on a simplex. method of meeting paths for decreasing quasi-regular mappings},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {273--286},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a23/}
}
TY  - JOUR
AU  - V. I. Shmyrev
TI  - Polyhedral complementarity on a simplex. method of meeting paths for decreasing quasi-regular mappings
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 273
EP  - 286
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a23/
LA  - ru
ID  - TIMM_2019_25_2_a23
ER  - 
%0 Journal Article
%A V. I. Shmyrev
%T Polyhedral complementarity on a simplex. method of meeting paths for decreasing quasi-regular mappings
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 273-286
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a23/
%G ru
%F TIMM_2019_25_2_a23
V. I. Shmyrev. Polyhedral complementarity on a simplex. method of meeting paths for decreasing quasi-regular mappings. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 273-286. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a23/

[1] Shmyrev V.I., “Ob otyskanii nepodvizhnykh tochek kusochno-postoyannykh monotonnykh otobrazhenii v $\mathbb{R}^n$”, Dokl. AN SSSR, 259:2 (1981), 299–301 | MR | Zbl

[2] Shmyrev V.I., “Zadacha poliedralnoi komplementarnosti”, cb. nauch. tr., Optimizatsiya, no. 44(61), In-t matematiki SO AN SSSR, Novosibirsk, 1988, 82–95

[3] Shmyrev V.I., “Poliedralnaya komplementarnost na simplekse. Potentsialnost regulyarnykh otobrazhenii”, Sib. zhurn. industr. matematiki, 21:1(73) (2018), 118–128 | DOI | MR | Zbl

[4] Shmyrev V.I., “Poliedralnaya komplementarnost na simplekse: otyskanie nepodvizhnykh tochek ubyvayuschikh regulyarnykh otobrazhenii”, Diskret. analiz i issled. operatsii, 26:1 (2019), 94–114 | DOI

[5] Lemke C.E., “Bimatrix equilibrium points and mathematical programming”, Managment Sience, 11:7 (1965), 681–689 | DOI | MR | Zbl

[6] Shmyrev V.I., “Algoritm poiska ravnovesiya v lineinoi modeli obmena”, Sib. mat. zhurn., 26:2 (1985), 162–175 | MR | Zbl

[7] Eisenberg E., Gale D., “Consensus of subjective probabilities: The pari-mutuel method”, Ann. Math. Statist., 30:1 (1959), 165–168 | DOI | MR | Zbl

[8] Devanur N. R., Papadimitriou C. H., Saberi A., Vazirani V. V., “Market equilibrium via a primal-dual algorithm for a convex program”, JACM, 55:5 (2008), 22 | DOI | MR | Zbl

[9] Shmyrev V. I., “Algoritmy poliedralnoi komplementarnosti dlya otyskaniya ravnovesiya v lineinykh modelyakh konkurentnoi ekonomiki”, Diskret. analiz i issled. operatsii. Ser. 2, 21:2 (2014), 84–101 | MR | Zbl

[10] Shmyrev V. I., “Ob odnom podkhode k otyskaniyu ravnovesiya v prosteishikh modelyakh obmena”, Dokl. AN SSSR, 268:5 (1983), 1062–1066 | MR | Zbl

[11] Nikhil R. Devanur, Kamal Jain, Tung Mai, Vijay V. Vazirani, Sadra Yazdanbod, “New convex programs for Fisher's market model and its generalizations”, 2016, 23 pp., arXiv: 1603.01257

[12] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani, Sadra Yazdanbod, “Convex program duality, fisher markets, and nash social welfare”, Proc. 18th ACM Conf. Econom. and Comput., 2017, 459–460 | DOI

[13] Shmyrev V. I., “Ob odnom algoritme otyskaniya ravnovesiya v lineinoi modeli obmena s fiksirovannymi byudzhetami”, Sib. zhurn. industr. matematiki, 11:2 (2008), 139–154 | MR | Zbl

[14] Pontryagin L. S., Osnovy kombinatornoi topologii, Gl. red. fiz. -mat. lit., M., 1986, 120 pp. | MR

[15] Aleksandrov P. S., Obschaya teoriya gomologii, Gl. red. fiz.-mat. lit., M., 1979, 416 pp. | MR