Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 258-272
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $\mathcal{A}(U)$ is the set of functions analytic in the disk $U:=\{z: |z|1\}$, $L_2^{(r)}:=L_2^{(r)}(U)$ for $r\in\mathbb{N}$ is the class of functions $f\in\mathcal{A}(U)$ such that $f^{(r)}\in L_2^{(r)}$, and $W^{(r)}L_2$ is the class of functions $f\in L_2^{(r)}$ satisfying the constraint $\|f^{(r)}\|\leq 1$. We find exact values for mean-square approximations of functions $f\in W^{(r)}L_2$ and their successive derivatives $f^{(s)}$ ($1\leq s\leq r-1$, $r\geq 2$) in the metric of the space $L_2$. A similar problem is solved for the class $W_2^{(r)}(\mathscr{K}_{m},\Psi)$ ($r\in\mathbb{Z}_{+}$, $m\in\mathbb{N}$) of functions $f\in L_2^{(r)}$ such that the $\mathscr{K}$-functional of their $r$th derivative satisfies the condition \begin{equation*} \mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Psi(t^{m}), \ \ 01, \end{equation*} where $\Psi$ is some increasing majorant and $\Psi(0)=0$.
Keywords:
generalized modulus of continuity, generalized translation operator, orthonormal system, Jackson–Stechkin inequality, $\mathscr{K}$-functional.
@article{TIMM_2019_25_2_a22,
author = {M. Sh. Shabozov and M. S. Saidusajnov},
title = {Mean-square approximation of functions of a complex variable by {Fourier} sums in orthogonal systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--272},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/}
}
TY - JOUR AU - M. Sh. Shabozov AU - M. S. Saidusajnov TI - Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 258 EP - 272 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/ LA - ru ID - TIMM_2019_25_2_a22 ER -
%0 Journal Article %A M. Sh. Shabozov %A M. S. Saidusajnov %T Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems %J Trudy Instituta matematiki i mehaniki %D 2019 %P 258-272 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/ %G ru %F TIMM_2019_25_2_a22
M. Sh. Shabozov; M. S. Saidusajnov. Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 258-272. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/