Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 258-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $\mathcal{A}(U)$ is the set of functions analytic in the disk $U:=\{z: |z|1\}$, $L_2^{(r)}:=L_2^{(r)}(U)$ for $r\in\mathbb{N}$ is the class of functions $f\in\mathcal{A}(U)$ such that $f^{(r)}\in L_2^{(r)}$, and $W^{(r)}L_2$ is the class of functions $f\in L_2^{(r)}$ satisfying the constraint $\|f^{(r)}\|\leq 1$. We find exact values for mean-square approximations of functions $f\in W^{(r)}L_2$ and their successive derivatives $f^{(s)}$ ($1\leq s\leq r-1$, $r\geq 2$) in the metric of the space $L_2$. A similar problem is solved for the class $W_2^{(r)}(\mathscr{K}_{m},\Psi)$ ($r\in\mathbb{Z}_{+}$, $m\in\mathbb{N}$) of functions $f\in L_2^{(r)}$ such that the $\mathscr{K}$-functional of their $r$th derivative satisfies the condition \begin{equation*} \mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Psi(t^{m}), \ \ 01, \end{equation*} where $\Psi$ is some increasing majorant and $\Psi(0)=0$.
Keywords: generalized modulus of continuity, generalized translation operator, orthonormal system, Jackson–Stechkin inequality, $\mathscr{K}$-functional.
@article{TIMM_2019_25_2_a22,
     author = {M. Sh. Shabozov and M. S. Saidusajnov},
     title = {Mean-square approximation of functions of a complex variable by {Fourier} sums in orthogonal systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--272},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. S. Saidusajnov
TI  - Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 258
EP  - 272
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/
LA  - ru
ID  - TIMM_2019_25_2_a22
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. S. Saidusajnov
%T Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 258-272
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/
%G ru
%F TIMM_2019_25_2_a22
M. Sh. Shabozov; M. S. Saidusajnov. Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 258-272. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a22/

[1] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.; L., 1964, 440 pp.

[2] Abilov V.A., Abilova F.V., Kerimov M.K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, Zhurn. vychisl. matematiki i mat. fiziki, 50:6 (2010), 999–1004 | MR | Zbl

[3] Shabozov M.Sh., Saidusainov M.S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. mat. zhurn., 20:1 (2018), 86–97 | DOI | MR

[4] Shabozov M.Sh., Saidusainov M.S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Mat. zametki, 103:4 (2018), 617–631 | DOI | Zbl

[5] Shevchuk I.A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992, 227 pp.

[6] Vakarchuk S.B., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Mat. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[7] Vakarchuk S.B., “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Mat. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl

[8] Shabozov M.Sh., Vakarchuk S.B., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami i tochnykh znacheniyakh poperechnikov funktsionalnykh klassov v $L_2$”, Analysis Math., 38:2 (2012), 147–159 | DOI | MR | Zbl

[9] Shabozov M.Sh., Vakarchuk S.B., Zabutnaya V.I., “Structural characteristics of functions from $L_2$ and the exact values of widths of some functional classes”, J. Math. Sci., 206:1 (2015), 97–114 | DOI | MR | Zbl

[10] Vakarchuk S.B., Shabozov M.Sh., “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Mat. sbornik, 201:8 (2010), 3–22 | DOI | MR | Zbl

[11] Shabozov M.Sh., Yusupov G.A., “Nailuchshie metody priblizheniya i znacheniya poperechnikov nekotorykh klassov funktsii v prostranstve $H_{q,rho}$, $1\leq q\leq\infty$, $0\le\rho\leq 1$”, Sib. mat. zhurn., 57:2 (336) (2016), 469–480 | MR

[12] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, Moskva, 1980, 264 pp.

[13] Mhaskar N.H., “Weighted polynomial approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl

[14] Ditzian Z., Totik V., “$mathscr{K}$-functionals and best polynomial approximation in weighted $L^{p}(mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl

[15] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva - Ermita i poperechniki funktsionalnykh klassov”, Mat. zametki, 95:5 (2014), 666–684 | DOI | Zbl

[16] Shabozov M.Sh., Tukhliev K., “$mathscr{K}$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2\big((\sqrt{1-x^{2}})^{-1},[-1,1]\big)$”, Izv. TulGU. Estestvennye nauki, 2014, no. 1-1, 83–97

[17] Saidusaynov M.S., “$\mathscr{K}$-functionals and exact values of $n$-widths in the Bergman space”, Ural Math. J., 3:2(5) (2017), 74–81 | DOI | MR

[18] Vakarchuk S.B., Vakarchuk M.B., “O neravenstvakh tipa Kolmogorova dlya analiticheskikh v kruge funktsii”, Visnik Dnipropetrovskogo universitetu. Cer.: Matematika, 20:6/1 (2012), 82–88