N. P. Kuptsov’s method for the construction of an extremal function in an inequality between uniform norms of derivatives of functions on the half-line
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 220-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the class $L_\infty^4(\mathbb{R}_+)$ of functions $f\in C(\mathbb{R}_+)$ having a locally absolutely continuous third-order derivative on the half-line $\mathbb{R}_+$ and such that $f^{(4)}\in L_\infty(\mathbb{R}_+)$, we study an extremal function in the exact inequalities $$ \| f^{(j)} \| \leq C_{4,j}(\mathbb{R}_+)\, \| f\|^{1-j/4} \, \| f^{(4)} \|^{j/4},\quad j=\overline{1,3},\quad f\in L_\infty^4(\mathbb{R}_+). $$ We present N. P. Kuptsov's earlier unpublished method for the construction of an extremal function, which is an ideal spline of the fourth degree. The method is iterative; it finds the knots and coefficients of the spline and calculates the values $C_{4,j}(\mathbb{R}_+)$. The proposed approach differs from the approach of Schoenberg and Cavaretta (1970) and allows to understand the structure of the problem more deeply.
Keywords: inequality between norms of derivatives of functions, four times differentiable functions, uniform norm, half-line.
@article{TIMM_2019_25_2_a20,
     author = {V. G. Timofeev},
     title = {N. {P.} {Kuptsov{\textquoteright}s} method for the construction of an extremal function in an inequality between uniform norms of derivatives of functions on the half-line},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {220--239},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a20/}
}
TY  - JOUR
AU  - V. G. Timofeev
TI  - N. P. Kuptsov’s method for the construction of an extremal function in an inequality between uniform norms of derivatives of functions on the half-line
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 220
EP  - 239
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a20/
LA  - ru
ID  - TIMM_2019_25_2_a20
ER  - 
%0 Journal Article
%A V. G. Timofeev
%T N. P. Kuptsov’s method for the construction of an extremal function in an inequality between uniform norms of derivatives of functions on the half-line
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 220-239
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a20/
%G ru
%F TIMM_2019_25_2_a20
V. G. Timofeev. N. P. Kuptsov’s method for the construction of an extremal function in an inequality between uniform norms of derivatives of functions on the half-line. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 220-239. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a20/

[1] Landau E., “Einige Ungleichungen für zweimal differentierbare Funktionen”, Proc. London Math. Soc. (2), 13 (1913), 43–49 | DOI | MR | Zbl

[2] Kolmogorov A.N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbr. tr. Matematika, mekhanika, Nauka, M., 1985, 252–263; Математика, т. 3, Уч. зап. Моск. ун-та, 30, 1939, 3–16

[3] Matorin A.P., “O neravenstvakh mezhdu naibolshimi znacheniyami absolyutnykh velichin funktsii i ee proizvodnykh na polupryamoi”, Ukr. mat. zhurn., 7 (1955), 262–266 | MR | Zbl

[4] Stechkin S.B., “O neravenstvakh mezhdu verkhnimi granyami proizvodnykh proizvolnoi funktsii na poluosi”, Mat. zametki, 1:6 (1967), 665–674 | Zbl

[5] Schoenberg I.J., Cavaretta A., “Solution of Landau's problem, concerning higher derivatives on half-line”, M.R.C. Technical Summary Report, Madison Wis., 1970, 1050

[6] Schoenberg I.J., Cavaretta A., “Solution of Landau's problem, concerning higher derivatives on half-line”, Proc. Conf. Approx. Theory (Varna 1970), Sofia, 1972, 297–308 | MR | Zbl

[7] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[8] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | DOI | MR | Zbl

[9] Timofeev V.G., “Kolmogorovskie otsenki v ravnomernoi metrike na poluosi cherez funktsiyu i ee pyatuyu proizvodnuyu”, Matematika, mekhanika, sb. tr., v. 2, Izd. Sarat. gos. un-ta, Saratov, 2000, 122–125

[10] Timofeev V.G., “Ob odnom spetsialnom otobrazhenii”, Izv. Sarat. un-ta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 11:3 (2011), 54–60

[11] Kudryavtsev L.D., “Differentsiruemye otobrazheniya n-mernykh oblastei i garmonicheskie otobrazheniya ploskikh oblastei”, Zasedanie Mosk. mat. ob-va. Uspekhi mat. nauk, 9:2 (60) (1954), 207–209 | MR

[12] Kudryavtsev L.D., “O variatsii otobrazhenii oblastei”, Matematicheskie voprosy teorii funktsii i otobrazhenii, sb. dokl. kollokviuma po teorii kvazikonformnykh otobrazhenii i ee obobscheniyam (Donetsk, sentyabr 1968 g.), v. 1, Izd-vo “Naukova dumka”, Kiev, 1969, 34–108