Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 21-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In the Hardy space $\mathcal{H}^p(D_\varrho)$, $1\le p\le\infty$, of functions analytic in the disk $D_\varrho=\left\{z\in\mathbb{C}\,:\,|z|\varrho\right\}$,
we denote by $NH^p(D_\varrho)$, $N>0$, the class of functions whose $L^p$-norm on the circle $\gamma_\varrho=\left\{z\in\mathbb{C} :\, |z|=\varrho\right\}$
does not exceed the number $N$ and by $\partial H^p(D_\varrho)$ the class consisting of the derivatives of functions from $1H^p(D_\varrho)$.
We consider the problem of the best approximation of the class $\partial H^p(D_\rho)$ by the class $NH^p(D_R)$, $N>0$, with respect to the $L^p$‑norm on the circle $\gamma_r$, $0$. The order of the best approximation as $N\rightarrow+\infty$ is found:
$$ \mathcal{E}\left(\partial H^p(D_\rho), NH^p(D_R)\right)_{L^p(\Gamma_r)} \asymp N^{-\beta/\alpha} \ln^{1/\alpha}N, \quad
\alpha=\frac{\ln R-\ln\rho}{\ln R-\ln r}, \quad \beta=1-\alpha.$$
In the case where the parameter $N$ belongs to some sequence of intervals, the exact value of the best approximation and a linear method implementing it are obtained. A similar problem is considered for classes of functions analytic in annuli.
Keywords:
analytic functions, Hardy class, best approximation of a class by a class.
@article{TIMM_2019_25_2_a2,
author = {R. R. Akopyan},
title = {Approximation of {Derivatives} of {Analytic} {Functions} from {One} {Hardy} {Class} by {Another} {Hardy} {Class}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {21--29},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/}
}
TY - JOUR AU - R. R. Akopyan TI - Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 21 EP - 29 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/ LA - ru ID - TIMM_2019_25_2_a2 ER -
R. R. Akopyan. Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 21-29. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/