Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the Hardy space $\mathcal{H}^p(D_\varrho)$, $1\le p\le\infty$, of functions analytic in the disk $D_\varrho=\left\{z\in\mathbb{C}\,:\,|z|\varrho\right\}$, we denote by $NH^p(D_\varrho)$, $N>0$, the class of functions whose $L^p$-norm on the circle $\gamma_\varrho=\left\{z\in\mathbb{C} :\, |z|=\varrho\right\}$ does not exceed the number $N$ and by $\partial H^p(D_\varrho)$ the class consisting of the derivatives of functions from $1H^p(D_\varrho)$. We consider the problem of the best approximation of the class $\partial H^p(D_\rho)$ by the class $NH^p(D_R)$, $N>0$, with respect to the $L^p$‐norm on the circle $\gamma_r$, $0$. The order of the best approximation as $N\rightarrow+\infty$ is found: $$ \mathcal{E}\left(\partial H^p(D_\rho), NH^p(D_R)\right)_{L^p(\Gamma_r)} \asymp N^{-\beta/\alpha} \ln^{1/\alpha}N, \quad \alpha=\frac{\ln R-\ln\rho}{\ln R-\ln r}, \quad \beta=1-\alpha.$$ In the case where the parameter $N$ belongs to some sequence of intervals, the exact value of the best approximation and a linear method implementing it are obtained. A similar problem is considered for classes of functions analytic in annuli.
Keywords: analytic functions, Hardy class, best approximation of a class by a class.
@article{TIMM_2019_25_2_a2,
     author = {R. R. Akopyan},
     title = {Approximation of {Derivatives} of {Analytic} {Functions} from {One} {Hardy} {Class} by {Another} {Hardy} {Class}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {21--29},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 21
EP  - 29
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/
LA  - ru
ID  - TIMM_2019_25_2_a2
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 21-29
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/
%G ru
%F TIMM_2019_25_2_a2
R. R. Akopyan. Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 21-29. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a2/

[1] Akopyan R.R., “Nailuchshee priblizhenie operatora analiticheskogo prodolzheniya na klasse analiticheskikh v koltse funktsii”, Tr. Instituta matematiki i mekhaniki UrO RAN, 18:4 (2012), 3–13

[2] Akopyan Roman R., “Approximation of the differentiation operator on the class of functions analytic in an annulus”, Ural Math. J., 3:2 (2017), 6–13 | DOI | MR

[3] Arestov V.V., “Priblizhenie lineinykh operatorov i rodstvennye ekstremalnye zadachi”, Tr. MIAN SSSR, 138, 1975, 29–42 | Zbl

[4] Arestov V.V., “O nekotorykh ekstremalnykh zadachakh dlya differentsiruemykh funktsii odnoi peremennoi”, Tr. MIAN SSSR, 138, 1975, 3–28 | Zbl

[5] Arestov V.V., “Nailuchshee priblizhenie odnogo klassa funktsii mnogikh peremennykh drugim i rodstvennye ekstremalnye zadachi”, Matem. zametki, 64:3 (1998), 323–340 | DOI | MR | Zbl

[6] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (312) (1996), 89–124 | DOI | MR | Zbl

[7] Taikov L.V., “Analiticheskoe prodolzhenie funktsii s oshibkoi”, Tr. MIAN SSSR, 109, 1971, 61–64 | Zbl

[8] Shvedenko S.V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhniki. Ser. Mat. analiz, 23 (1985), 3–124 | MR | Zbl