A Method for the Construction of Local Parabolic Splines with Additional Knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 205-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a general method for the construction of local parabolic splines with an arbitrary arrangement of knots for functions given on grid subsets of the number axis or its segment. Special cases of this scheme are Yu. N. Subbotin's and B. I. Kvasov's splines. For Kvasov's splines, we consider boundary conditions different from those suggested by Kvasov. We study the approximating and smoothing properties of these splines in the case of uniform knots. In particular, we find two-sided estimates for the error of approximation of the function classes $W_{\infty}^2$ and $W_{\infty}^3$ by these splines in the uniform metric and calculate the exact uniform Lebesgue constants and the norms of the second derivatives on the class $W_{\infty}^2$. These properties are compared with the corresponding properties of Subbotin's splines.
Keywords: local parabolic splines, approximation, equally spaced knots.
Mots-clés : interpolation
@article{TIMM_2019_25_2_a19,
     author = {Yu. N. Subbotin and V. T. Shevaldin},
     title = {A {Method} for the {Construction} of {Local} {Parabolic} {Splines} with {Additional} {Knots}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {205--219},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a19/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - V. T. Shevaldin
TI  - A Method for the Construction of Local Parabolic Splines with Additional Knots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 205
EP  - 219
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a19/
LA  - ru
ID  - TIMM_2019_25_2_a19
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A V. T. Shevaldin
%T A Method for the Construction of Local Parabolic Splines with Additional Knots
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 205-219
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a19/
%G ru
%F TIMM_2019_25_2_a19
Yu. N. Subbotin; V. T. Shevaldin. A Method for the Construction of Local Parabolic Splines with Additional Knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a19/

[1] Subbotin Yu.N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl

[2] Shevaldin V.T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | Zbl

[3] Shevaldin V.T., Approksimatsiya lokalnymi splainami, UrO RAN, Ekaterinburg, 2014, 198 pp.

[4] Kobylkin K.S., “Primenenie formosokhranyayuschikh splainov dlya otsenki plotnosti raspredeleniya zemli mezhdu krestyanskimi khozyaistvami posle reformy 1863 goda”, Vestn. Ural. in-ta ekonomiki, upravleniya i prava, 2010, no. 3, 94–99

[5] Getmanov V.G., “Metody vychisleniya approksimatsionnykh splainovykh funktsii dlya zadach tsifrovoi filtratsii”, Izv. RAN. Teoriya i sistemy upravleniya, 2016, no. 5, 47–57 | DOI | MR

[6] Pravdin S.F., “Metod resheniya zadachi reaktsii diffuzii na nesimmetrichnoi modeli miokarda levogo zheludochka serdtsa”, Tr. 47-i Mezhdunar. molodezh. shk.-konf. “Sovremennye problemy matematiki i ee prilozhenii” (CEUR-WS), v. 1662, 2016, 284–296

[7] Kvasov B.I., “Interpolyatsiya ermitovymi parabolicheskimi splainami”, Izv. vuzov. Matematika, 1984, no. 5, 25–32 | MR

[8] Lyche T., Schumaker L.L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[9] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[10] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.

[11] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR