Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 167-176
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the orthonormal bases of $n$-separate MRAs and wavelets constructed by the author earlier. The classical wavelet basis of the space $L^2(\mathbb{R})$ is formed by shifts and compressions of a single function $\psi$. In contrast to the classical case, we consider a basis of $L^2(\mathbb{R})$ formed by shifts and compressions of $n$ functions $\psi^s$, $s=1,\ldots,n$. The constructed $n$-separate wavelets form an orthonormal basis of $L^2(\mathbb{R})$. In this case, the series $\sum_{s=1}^{n}\sum_{j\in\mathbb{Z}}\sum_{k\in\mathbb{Z}}\langle f,\psi^s_{nj+s} \rangle \psi^s_{nj+s}$ converges to the function $f$ in the space $L^2(\mathbb{R})$. We write additional constraints on the functions $\varphi^s$ and $\psi^s$, $s=1,\ldots,n$, that provide the convergence of the series to the function $f$ in the spaces $L^p(\mathbb{R})$, $1 \leq p \leq \infty$, in the norm and almost everywhere.
Keywords:
wavelet, scaling function, basis, multiresolution analysis.
@article{TIMM_2019_25_2_a15,
author = {E. A. Pleshcheva},
title = {Approximation of {Functions} by $n${-Separate} {Wavelets} in the {Spaces} ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {167--176},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a15/}
}
TY - JOUR
AU - E. A. Pleshcheva
TI - Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$
JO - Trudy Instituta matematiki i mehaniki
PY - 2019
SP - 167
EP - 176
VL - 25
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a15/
LA - ru
ID - TIMM_2019_25_2_a15
ER -
%0 Journal Article
%A E. A. Pleshcheva
%T Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 167-176
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a15/
%G ru
%F TIMM_2019_25_2_a15
E. A. Pleshcheva. Approximation of Functions by $n$-Separate Wavelets in the Spaces ${L}^p(\mathbb{R})$, $1\leq p\leq\infty$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a15/