Markov’s weak inequality for algebraic polynomials on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a real algebraic polynomial $P_n$ of degree $n$, we consider the ratio $M_n(P_n)$ of the measure of the set of points from $[-1,1]$ where the absolute value of the derivative exceeds $n^2$ to the measure of the set of points where the absolute value of the polynomial exceeds 1. We study the supremum $M_n=\sup M_n(P_n)$ over the set of polynomials $P_n$ whose uniform norm on $[- 1,1]$ is greater than 1. It is known that $M_n$ is the supremum of the exact constants in Markov's inequality in the class of integral functionals generated by a nondecreasing nonnegative function. In this paper we prove the estimates $1+3/(n^{2}-1)\le M_n \le 6n+1$ for $n\ge2$.
Keywords: Markov's inequality, algebraic polynomials, weak-type inequalities.
Mots-clés : Lebesgue measure
@article{TIMM_2019_25_2_a14,
     author = {N. S. Payuchenko},
     title = {Markov{\textquoteright}s weak inequality for algebraic polynomials on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {160--166},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/}
}
TY  - JOUR
AU  - N. S. Payuchenko
TI  - Markov’s weak inequality for algebraic polynomials on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 160
EP  - 166
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/
LA  - ru
ID  - TIMM_2019_25_2_a14
ER  - 
%0 Journal Article
%A N. S. Payuchenko
%T Markov’s weak inequality for algebraic polynomials on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 160-166
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/
%G ru
%F TIMM_2019_25_2_a14
N. S. Payuchenko. Markov’s weak inequality for algebraic polynomials on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/

[1] Sroka G., “Constants in V.A. Markov's inequality in $L_p$ norms”, J. Approx. Theory, 194 (2015), 27–34 | DOI | MR | Zbl

[2] Glazyrina P.Yu., “Tochnoe neravenstvo Markova - Nikolskogo dlya algebraicheskikh mnogochlenov v prostranstvakh $L_q$, $L_0$ na otrezke”, Mat. zametki, 84:1 (2008), 3–22 | DOI | MR | Zbl

[3] Milovanovic G. V Mitrinovic D. S. Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ, Singapore, 1994, 821 pp. | DOI | MR | Zbl

[4] Goetgheluck P., “On the Markov inequality in $L^p$-spaces”, J. Approx. Theory, 62 (1990), 197–205 | DOI | MR | Zbl

[5] Arestov V. V., “Algebraic polynomials least deviating from zero in measure on a segment”, Ukranian Math. J., 62:3 (2010), 331–342 | DOI | MR | Zbl

[6] Babenko A. G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2 (1992), 34–41 | Zbl

[7] Livshits E. D., “Neravenstvo slabogo tipa dlya ravnomerno ogranichennykh trigonometricheskikh polinomov”, Tr. MIAN, 280, 2013, 215–226 | DOI | Zbl

[8] Voronovkaya E. V., “Funktsional pervoi proizvodnoi i utochnenie teoremy A. A. Markova”, Izv. AN SSSR. Ser. matematicheskaya, 23:6 (1959), 951–962

[9] Gusev V. A., “Funktsionaly proizvodnykh ot algebraicheskogo polinoma i teorema V. A. Markova”, Izv. AN SSSR. Ser. matematicheskaya, 25:3 (1961), 367–384 | Zbl

[10] Voronovkaya E. V., Metod funktsionalov i ego prilozheniya, Izd-vo Leningradskogo elektrotekhnicheskogo In-ta svyazi, Leningrad, 1963, 181 pp.

[11] Borwein P., Erdeyi T., Polynomials and polynomial inequalities, Graduate Texts in Math., 161, 1995, 480 pp. | DOI | MR