Mots-clés : Lebesgue measure
@article{TIMM_2019_25_2_a14,
author = {N. S. Payuchenko},
title = {Markov{\textquoteright}s weak inequality for algebraic polynomials on a closed interval},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {160--166},
year = {2019},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/}
}
N. S. Payuchenko. Markov’s weak inequality for algebraic polynomials on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/
[1] Sroka G., “Constants in V.A. Markov's inequality in $L_p$ norms”, J. Approx. Theory, 194 (2015), 27–34 | DOI | MR | Zbl
[2] Glazyrina P.Yu., “Tochnoe neravenstvo Markova - Nikolskogo dlya algebraicheskikh mnogochlenov v prostranstvakh $L_q$, $L_0$ na otrezke”, Mat. zametki, 84:1 (2008), 3–22 | DOI | MR | Zbl
[3] Milovanovic G. V Mitrinovic D. S. Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ, Singapore, 1994, 821 pp. | DOI | MR | Zbl
[4] Goetgheluck P., “On the Markov inequality in $L^p$-spaces”, J. Approx. Theory, 62 (1990), 197–205 | DOI | MR | Zbl
[5] Arestov V. V., “Algebraic polynomials least deviating from zero in measure on a segment”, Ukranian Math. J., 62:3 (2010), 331–342 | DOI | MR | Zbl
[6] Babenko A. G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2 (1992), 34–41 | Zbl
[7] Livshits E. D., “Neravenstvo slabogo tipa dlya ravnomerno ogranichennykh trigonometricheskikh polinomov”, Tr. MIAN, 280, 2013, 215–226 | DOI | Zbl
[8] Voronovkaya E. V., “Funktsional pervoi proizvodnoi i utochnenie teoremy A. A. Markova”, Izv. AN SSSR. Ser. matematicheskaya, 23:6 (1959), 951–962
[9] Gusev V. A., “Funktsionaly proizvodnykh ot algebraicheskogo polinoma i teorema V. A. Markova”, Izv. AN SSSR. Ser. matematicheskaya, 25:3 (1961), 367–384 | Zbl
[10] Voronovkaya E. V., Metod funktsionalov i ego prilozheniya, Izd-vo Leningradskogo elektrotekhnicheskogo In-ta svyazi, Leningrad, 1963, 181 pp.
[11] Borwein P., Erdeyi T., Polynomials and polynomial inequalities, Graduate Texts in Math., 161, 1995, 480 pp. | DOI | MR