Markov’s weak inequality for algebraic polynomials on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166

Voir la notice de l'article provenant de la source Math-Net.Ru

For a real algebraic polynomial $P_n$ of degree $n$, we consider the ratio $M_n(P_n)$ of the measure of the set of points from $[-1,1]$ where the absolute value of the derivative exceeds $n^2$ to the measure of the set of points where the absolute value of the polynomial exceeds 1. We study the supremum $M_n=\sup M_n(P_n)$ over the set of polynomials $P_n$ whose uniform norm on $[- 1,1]$ is greater than 1. It is known that $M_n$ is the supremum of the exact constants in Markov's inequality in the class of integral functionals generated by a nondecreasing nonnegative function. In this paper we prove the estimates $1+3/(n^{2}-1)\le M_n \le 6n+1$ for $n\ge2$.
Keywords: Markov's inequality, algebraic polynomials, weak-type inequalities.
Mots-clés : Lebesgue measure
@article{TIMM_2019_25_2_a14,
     author = {N. S. Payuchenko},
     title = {Markov{\textquoteright}s weak inequality for algebraic polynomials on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {160--166},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/}
}
TY  - JOUR
AU  - N. S. Payuchenko
TI  - Markov’s weak inequality for algebraic polynomials on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 160
EP  - 166
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/
LA  - ru
ID  - TIMM_2019_25_2_a14
ER  - 
%0 Journal Article
%A N. S. Payuchenko
%T Markov’s weak inequality for algebraic polynomials on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 160-166
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/
%G ru
%F TIMM_2019_25_2_a14
N. S. Payuchenko. Markov’s weak inequality for algebraic polynomials on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/