Markov’s weak inequality for algebraic polynomials on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166
Voir la notice de l'article provenant de la source Math-Net.Ru
For a real algebraic polynomial $P_n$ of degree $n$, we consider the ratio $M_n(P_n)$ of the measure of the set of points from $[-1,1]$ where the absolute value of the derivative exceeds $n^2$ to the measure of the set of points where the absolute value of the polynomial exceeds 1. We study the supremum $M_n=\sup M_n(P_n)$ over the set of polynomials $P_n$ whose uniform norm on $[- 1,1]$ is greater than 1. It is known that $M_n$ is the supremum of the exact constants in Markov's inequality in the class of integral functionals generated by a nondecreasing nonnegative function. In this paper we prove the estimates $1+3/(n^{2}-1)\le M_n \le 6n+1$ for $n\ge2$.
Keywords:
Markov's inequality, algebraic polynomials, weak-type inequalities.
Mots-clés : Lebesgue measure
Mots-clés : Lebesgue measure
@article{TIMM_2019_25_2_a14,
author = {N. S. Payuchenko},
title = {Markov{\textquoteright}s weak inequality for algebraic polynomials on a closed interval},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {160--166},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/}
}
TY - JOUR AU - N. S. Payuchenko TI - Markov’s weak inequality for algebraic polynomials on a closed interval JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 160 EP - 166 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/ LA - ru ID - TIMM_2019_25_2_a14 ER -
N. S. Payuchenko. Markov’s weak inequality for algebraic polynomials on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 160-166. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a14/