@article{TIMM_2019_25_2_a12,
author = {P. D. Lebedev and A. L. Kazakov},
title = {Construction of optimal covers by disks of different radii for convex planar sets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {137--148},
year = {2019},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a12/}
}
TY - JOUR AU - P. D. Lebedev AU - A. L. Kazakov TI - Construction of optimal covers by disks of different radii for convex planar sets JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 137 EP - 148 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a12/ LA - ru ID - TIMM_2019_25_2_a12 ER -
P. D. Lebedev; A. L. Kazakov. Construction of optimal covers by disks of different radii for convex planar sets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a12/
[1] Lempert A.A., Kazakov A.L., Bukharov D.S., “Mathematical model and program system for solving a problem of logistic objects placement”, Autom. Remote Control, 76:8 (2015), 1463–1470 | DOI | Zbl
[2] Bychkov I.V., Kazakov A.L., Lempert A.A., Bukharov D.S., Stolbov A.B., “An intelligent management system for the development of a regional transport logistics infrastructure”, Autom. Remote Control, 77:2 (2016), 332–343 | DOI | MR | Zbl
[3] Preparata F.P., Shamos M.I., Computational geometry: An introduction, Springer-Verlag, N Y, 1985, 398 pp. | DOI | MR
[4] Tot L.F., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, Moskva, 1958, 364 pp.
[5] Kazakov A.L., Lebedev P.D., “Algoritmy postroeniya nailuchshikh $n$-setei v metricheskikh prostranstvakh”, Avtomatika i telemekhanika, 2017, no. 7, 141–155 | DOI | Zbl
[6] Lempert, A., Le, Q.M., “Multiple covering of a closed set on a plane with non-Euclidean metrics”, IFAC-PapersOnLine, 51:32 (2018), 850–854 | DOI
[7] Toth L.F., “Solid circle-packings and circle-coverings”, Studia Sci. Math. Hungar, 3 (1968), 401–409 | MR | Zbl
[8] Toth F. G., “Covering the plane with two kinds of circles”, Discrete Comput. Geom., 13:3-4 (1995), 445–457 | DOI | MR | Zbl
[9] Florian A., Heppes A., “Solid coverings of the Euclidean plane with incongruent circles”, Discrete Comput. Geom., 23:2 (2000), 225–245 | DOI | MR | Zbl
[10] Dorninger D., “Thinnest covering of the Euclidean plane with incongruent circles”, Anal. Geom. Metr. Spaces, 5:1 (2017), 40–46 | DOI | MR | Zbl
[11] Banhelyi B., Palatinus E, Levai B.L., “Optimal circle covering problems and their applications”, Central Europ. J. Oper. Research, 23:4 (2015), 815–832 | DOI | MR | Zbl
[12] Kazakov A.L., Lempert A.A., Le Q.M., “An algorithm for packing circles of two types in a fixed size container with non-Euclidean metric”, CEUR-WS, 1975 (2017), 286–297
[13] Kazakov A., Lempert A., Lebedev P., “Congruent circles packing and covering problems for multi-connected domains with non-euclidean metric, and their applications to logistics”, CEUR-WS, 1839 (2017), 334–343
[14] Lempert A., Kazakov A., Le Q.M., “On reserve and double covering problems for the sets with non-Euclidean metrics”, Yugoslav J. Oper. Research, 29:1 (2019), 69–79 | DOI | MR
[15] Lebedev P.D., “Iteratsionnye metody postroeniya approksimatsii optimalnykh pokrytii nevypuklykh ploskikh mnozhestv”, Chelyab. fiz.-matem. zhurn., 4:1 (2019), 5–17 | DOI | MR
[16] Brusov V.S., Piyavskii S.A., “Vychislitelnyi algoritm optimalnogo pokrytiya oblastei ploskosti”, Zhurn. vychisl. matematiki i mat. fiziki, 11:2 (1971), 304–312
[17] Garkavi A.L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi mat. nauk, 19:6 (120) (1964), 139–145 | MR | Zbl
[18] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR
[19] Lebedev P.D., Programma vychisleniya optimalnogo pokrytiya polusfery naborom sfericheskikh segmentov. Svidetelstvo o gosudarstvennoi registratsii No 2015661543 ot 29.10.2015