On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 9-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the generalized Lorentz space $L_{\psi,\tau}(\mathbb{T}^m)$ defined by some continuous concave function $\psi$ such that $\psi (0)=0$. For two spaces $L_{\psi_1,\tau_1}(\mathbb{T}^m)$ and $L_{\psi_2,\tau_2}(\mathbb{T}^{m})$ such that $\alpha_{\psi_{1}}={\underline\lim}_{t\rightarrow 0}\psi_{1}(2t)/\psi_{1}(t) = \beta_{\psi_{2}} = \overline{\lim}_{t\rightarrow 0}\psi_{2}(2t)/\psi_{2}(t)$, we prove an order-exact inequality of different metrics for multiple trigonometric polynomials. We also prove an auxiliary statement for functions of one variable with monotonically decreasing Fourier coefficients in a trigonometric system. In this statement we establish a two-sided estimate for the norm of the function $f\in L_{\psi, \tau}(\mathbb{T})$ in terms of the series composed of the Fourier coefficients of this function.
Keywords: generalized Lorentz space, Jackson–Nikol'skii inequality, trigonometric polynomial.
@article{TIMM_2019_25_2_a1,
     author = {G. A. Akishev},
     title = {On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {9--20},
     year = {2019},
     volume = {25},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a1/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 9
EP  - 20
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a1/
LA  - ru
ID  - TIMM_2019_25_2_a1
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 9-20
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a1/
%G ru
%F TIMM_2019_25_2_a1
G. A. Akishev. On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 2, pp. 9-20. http://geodesic.mathdoc.fr/item/TIMM_2019_25_2_a1/

[1] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, Moskva, 1978, 400 pp. | MR

[2] Semenov E.M., “Interpolyatsiya lineinykh operatorov v simmetrichnykh prostranstvakh”, Dokl. AN SSSR, 164:4 (1965), 746–749 | Zbl

[3] Sharpley R., “Space $\Lambda_{\alpha}(X)$ and interpolation”, J. Func. Anal., 11:4 (1972), 479–513 | DOI | MR | Zbl

[4] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, Moskva, 1974, 333 pp.

[5] Jackson D., “Certain problems of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR

[6] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278

[7] Bari N.K., “Obobschenie neravenstv S. N. Bernshteina i A. A. Markova”, Izv. AN SSSR. Cer. matematicheskaya, 18:2 (1954), 159–176 | Zbl

[8] Ibragimov I.I., “Ekstremalnye zadachi v klasse trigonometricheskikh polinomov”, Dokl. AN SSSR, 121:3 (1958), 415–417 | Zbl

[9] Potapov M.K., “Nekotorye neravenstva dlya polinomov i ikh proizvodnykh”, Vest. MGU. Ser. Matematika. Mekhanika, 1960, no. 2, 10–19

[10] Nessel R.J., Wilmes G., “Nikol'skii-type inequalities for trigonometric polynomials and entire functions of exponential type”, J. Austral. Math. Soc. Ser. A., 25:1 (1978), 7–18 | DOI | MR | Zbl

[11] Arestov V.V., “O neravenstve raznykh metrik dlya trigonometricheskikh polinomov”, Mat. zam., 27:4 (1980), 539–547 | MR | Zbl

[12] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approxim. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[13] Sherstneva L.A., “Neravenstva Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh Lorentsa”, Vestn. MGU, 1984, no. 4, 75–79 | MR | Zbl

[14] Sherstneva L.A., “O svoistvakh nailuchshikh priblizhenii Lorentsa i nekotorye teoremy vlozheniya”, Izv. vuzov. Matematika, 10 (1987), 48–58 | MR | Zbl

[15] Ditzian Z., Prymak A., “Nikol'skii inequalities for Lorentz spaces”, Rocky Mountain J. Math., 40:1 (2010), 209–223 | DOI | MR | Zbl

[16] Gogatishvili A., Opic B., Tikhonov S., Trebels W., “Ulyanov-type inequalities between Lorentz-Zygmund spaces”, J. Fourier Anal. Appl., 20:5 (2014), 1020–1049 | DOI | MR | Zbl

[17] Simonov B.V., “O vlozhenii klassov Nikolskogo v prostranstva Lorentsa”, Sib. mat. zhurn., 51:4 (2010), 911–919 | MR

[18] Rodin V.A., “Teorema Khardi - Littlvuda dlya kosinus-ryada v simmetrichnom prostranstve”, Mat. zametki, 20:2 (1976), 241–246 | MR | Zbl

[19] Johansson H., Embedding of $H_{p}^{\omega}$ in some Lorentz spases, Research Report 6, Department of Mathematics, Umea University, 1975, 36 pp. | Zbl