Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 120-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper discusses several methods of analytic continuation of a multivalued function of one variable given on a part of its Riemann surface in the form of a Puiseux series generated by the power function $z=w^{1/\rho}$, where $\rho>1/2$ and $\rho\neq 1$. We present a many-sheeted variant of G. Pólya's theorem describing the relation between the indicator and conjugate diagrams for entire functions of exponential type. The description is based on V. Bernstein's construction for the many-sheeted indicator diagram of an entire function of order $\rho\neq 1$ and normal type. The summation domain of the “proper” Puiseux series (the many-sheeted “Borel polygon”) is found with the use of a generalization of the Borel method. This result seems to be new even in the case of a power series. The theory is applied to describe the domains of analytic continuation of Puiseux series representing the inverses of rational functions. As a consequence, a new approach to the solution of algebraic equations is found.
Keywords: entire function, order, indicator, multivalued function, many-sheeted diagram, concave diagram, indicator diagram, conjugate diagram, Riemann surface, analytic continuation
Mots-clés : Puiseux series, solution of algebraic equations.
@article{TIMM_2019_25_1_a9,
     author = {L. S. Maergoiz},
     title = {Analytic {Continuation} {Methods} for {Multivalued} {Functions} of {One} {Variable} and {Their} {Application} to the {Solution} of {Algebraic} {Equations}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--135},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a9/}
}
TY  - JOUR
AU  - L. S. Maergoiz
TI  - Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 120
EP  - 135
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a9/
LA  - ru
ID  - TIMM_2019_25_1_a9
ER  - 
%0 Journal Article
%A L. S. Maergoiz
%T Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 120-135
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a9/
%G ru
%F TIMM_2019_25_1_a9
L. S. Maergoiz. Analytic Continuation Methods for Multivalued Functions of One Variable and Their Application to the Solution of Algebraic Equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 120-135. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a9/

[1] Borel E., Lecons sur les séries divergentes, Gaunter-Villars, Paris, 1901, 184 pp. ; Collection de monographies sur la théorie des fonctions, 2nd ed., Gaunter-Villars, Paris, 1928, 260 pp. | MR

[2] Polya G., “Untersuchungen über Lücken and Singularitäten von Potenzsrihen”, Math. Zeits, 29:1 (1929), 549–640 | DOI | MR | Zbl

[3] Maergoiz L.S., Asymptotic characteristics of entire functions and their applications in mathematics and biophysics, 2nd ed. (revised and enlarged), Kluwer Acad. Publ., Dordrecht; Boston; London, 2003, 362 pp. | MR | Zbl

[4] Bernstein V., “Sulle proprieta caratteristiche delle indicatrici di crescenza delle transcendenti intere d'ordine finito”, Memoire della classe di scien. fis. mat. e natur, 6 (1936), 131–189

[5] Levin B.Ya., Lectures on entire functions, Transl. Math. Monographes, 150, Amer. Math. Soc., Providence, 1996, 248 pp. | DOI | MR | Zbl

[6] Rockafellar R.T., Convex analysis, Princeton University Press, Princeton, 1970, 451 pp. | MR | Zbl

[7] Maergoiz L.S., “Mnogolistnye varianty teorem Poia - Bernshteina, Borelya dlya tselykh funktsii poryadka $\rho \neq 1$ i ikh prilozheniya”, Dokl. AN, 478:3 (2018), 266–270 | DOI | Zbl

[8] Maergoiz L.S., “Ways of analytic continuation of many-valued function of one variable. Applications”, Internat. conf. “Complex analysis and its applications” dedicated to the 90th birth anniversary of I. P. Mityuk (Gelendzhik - Krasnodar, Russia, June 2 to 9, 2018), 75 | MR | Zbl

[9] Maergoiz L.S., Manysheeted variants of Polya-Bernstein and Borel theorems for entire functions of order $\rho \neq 1$ and some applications, Preprint, Siberian Federal University, Krasnoyarsk, 2017, 28 pp. | MR

[10] Forster O., Riemannsche Flächen, Springer-Verlag, Berlin; Heidelberg; N Y, 1977, 226 pp. | DOI | MR | Zbl

[11] Levin B.Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.

[12] Maergoiz L.S., “O strukture indikatora tseloi funktsii konechnogo poryadka i normalnogo tipa”, Sib. mat. zhurn., 16:2 (1975), 301–313 | Zbl

[13] Dzhrbashyan M.M., Integralnye preobrazovaniya i predstavleniya v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.

[14] Riordan J., An Introduction to sombinatorial analysis, John Wiley and Sons, N Y, 1958, 244 pp. | MR

[15] Mellin H.J., “Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci, 172 (1921), 658–661 | Zbl

[16] Sadykov T.M., Tsikh A.K., Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014, 408 pp.