Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 108-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Procedures for the construction of an optimal result function have been developed for a planar time-optimal control problem with a circular velocity vectorgram and nonconvex compact target set whose boundary has smoothness 1 or 2. Pseudovertices, which are characteristic points of the boundary of the target set defining the character of the singularity of this function, are studied. Differential dependences for smooth segments of the singular set are revealed, which allows to consider and construct them as arcs of integral curves. The necessary conditions for the existence of pseudovertices are found and formulas for the projections of points of the singular set in neighborhoods of pseudovertices are obtained. The proposed procedures are implemented in the form of computational algorithms. Their efficiency is illustrated by examples of the numerical solution of optimal-time control problems with different orders of smoothness of the boundaries of the target sets. Visualization of the results is performed.
Keywords: time-optimal problem, singular set, dispersing curve, optimal result function, symmetry set.
Mots-clés : pseudo-vertex
@article{TIMM_2019_25_1_a8,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {108--119},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a8/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 108
EP  - 119
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a8/
LA  - ru
ID  - TIMM_2019_25_1_a8
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 108-119
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a8/
%G ru
%F TIMM_2019_25_1_a8
P. D. Lebedev; A. A. Uspenskii. Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 108-119. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a8/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Lebedev P.D., Uspenskii A.A., “Analiticheskoe i chislennoe konstruirovanie funktsii optimalnogo rezultata dlya odnogo klassa zadach bystrodeistviya”, Prikl. matematika i informatika, tr. fak-ta VMK Mosk. un-ta, 27, 2007, 65–79

[3] Lebedev P. D., Uspenskii A. A., “Geometriya i asimptotika volnovykh frontov”, Izv. vuzov. Matematika, 2008, no. 3 (550), 27–37 | Zbl

[4] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Geometriya singulyarnykh krivykh dlya odnogo klassa zadach bystrodeistviya”, Vestn. S.-Peterb. un-ta. Ser. 10, 2013, no. 3, 157–167

[5] Uspenskii A.A., Lebedev P.D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | Zbl

[6] Lebebev P.D., Uspenskii A.A., Ushakov V.N., “Construction of nonsmooth solutions in one class of velocity problems”, Constructive Nonsmooth Analysis and Related Topics, (dedicated to the memory of V. F. Demyanov), CNSA-2017: Proc. conf, 2017, 7973981, 185–188 | DOI

[7] Aizeks R., Differentsialnye igry, Mir, Moskva, 1967, 479 pp. | MR

[8] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Izd-vo In-ta kompyuternykh tekhnologii, Moskva; Izhevsk, 2003, 336 pp.

[9] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii. I”, Mat. sb., 98 (140):3 (11) (1975), 450–493 | MR | Zbl

[10] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, Moskva, 1981, 384 pp. | MR

[11] Sedykh V. D., “On the topology of cooriented wave fronts in spaces of small dimensions”, Mosc. Math. J., 11:3 (2011), 583–598 | MR | Zbl

[12] Sedykh V.D., “O topologii volnovykh frontov v prostranstvakh nebolshikh razmernostei”, Izv. RAN. Ser. matematicheskaya, 76:2 (2012), 171–214 | DOI | MR | Zbl

[13] Arnold V.I., Osobennosti kaustik i volnovykh frontov, FAZIS, Moskva, 1996, 334 pp. | MR

[14] Giblin P.J., Warder J.P., “Evolving evolutoids”, American Math. Monthly, 121:10 (2014), 871–889 | DOI | MR | Zbl

[15] Giblin P.J., Reeve G., “Centre symmetry sets of families of plane curves”, Demonstratio Mathematica, 48:2 (2015), 167–192 | DOI | MR | Zbl

[16] Mestetskii L. M., Nepreryvnaya morfologiya binarnykh izobrazhenii: figury, skelety, tsirkulyary, Fizmatlit, Moskva, 2009, 288 pp.

[17] Rashevskii P.K., Kurs differentsialnoi geometrii, “Editorial URSS”, Moskva, 2003, 432 pp. | MR

[18] Leikhtveis K., Vypuklye mnozhestva, Nauka, Moskva, 1985, 335 pp. | MR

[19] Lebedev P.D., Uspenskii A.A., Programma postroeniya volnovykh frontov i funktsii evklidova rasstoyaniya do kompaktnogo nevypuklogo mnozhestva, Svid-vo o gos. registratsii programmy dlya EVM No2017662074 ot 27.10.2017

[20] Preparata F.P., Shamos M.I., Computational geometry: An introduction, Springer-Verlag, N Y, 1988 | MR