Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 78-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish that if the distribution function of a measurable function $v$ defined on a bounded domain $\Omega$ in $\mathbb R^n$ ($n\ge 2$) satisfies, for sufficiently large $k$, the estimate ${\rm meas}\{\vert v\vert>k\}\le k^{-\alpha}\varphi(k)/\psi(k)$, where $\alpha>0$, $\varphi\,\colon[1,+\infty)\to\mathbb R$ is a nonnegative nonincreasing measurable function such that the integral of the function $s\to\varphi(s)/s$ over $[1,+\infty)$ is finite, and $\psi\,\colon[0,+\infty)\to\mathbb R$ is a positive continuous function with some additional properties, then $\vert v\vert^\alpha\psi(\vert v\vert)\in L^1(\Omega)$. In so doing, the function $\psi$ can be either bounded or unbounded. We give corollaries of the corresponding theorems for some specific ratios of the functions $\varphi$ and $\psi$. In particular, we consider the case where the distribution function of a measurable function $v$ satisfies, for sufficiently large $k$, the estimate ${\rm meas}\{\vert v\vert>k\}\le Ck^{-\alpha}(\ln k)^{-\beta}$ with $C,\alpha>0$ and $\beta\ge 0$. In this case, we strengthen our previous result for $\beta>1$ and, on the whole, we show how the integrability properties of the function $v$ differ depending on which interval, $[0,1]$ or $(1,+\infty)$, contains $\beta$. We also consider the case where the distribution function of a measurable function $v$ satisfies, for sufficiently large $k$, the estimate ${\rm meas}\{\vert v\vert>k\}\le Ck^{-\alpha}(\ln\ln k)^{-\beta}$ with $C,\alpha>0$ and $\beta\ge 0$. We give examples showing the accuracy of the obtained results in the corresponding scales of classes close to $L^\alpha(\Omega)$. Finally, we give applications of these results to entropy and weak solutions of the Dirichlet problem for second-order nonlinear elliptic equations with right-hand side in some classes close to $L^1(\Omega)$ and defined by the logarithmic function or its double composition.
Keywords: integrability, distribution function, nonlinear elliptic equations, right-hand side in classes close to $L^1$, Dirichlet problem, weak solution, entropy solution.
@article{TIMM_2019_25_1_a6,
     author = {A. A. Kovalevsky},
     title = {Integrability {Properties} of {Functions} with a {Given} {Behavior} of {Distribution} {Functions} and {Some} {Applications}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {78--92},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a6/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 78
EP  - 92
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a6/
LA  - ru
ID  - TIMM_2019_25_1_a6
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 78-92
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a6/
%G ru
%F TIMM_2019_25_1_a6
A. A. Kovalevsky. Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 78-92. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a6/

[1] Talenti G., “Elliptic equations and rearrangements”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. (4), 3:4 (1976), 697–718 | MR | Zbl

[2] Bénilan Ph., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[3] Kovalevskii A.A., “O summiruemosti reshenii nelineinykh ellipticheskikh uravnenii s pravymi chastyami iz klassov, blizkikh k $L^1$”, Mat. zametki, 70:3 (2001), 375–385 | DOI | MR | Zbl

[4] Kovalevsky A.A., “General conditions for limit summability of solutions of nonlinear elliptic equations with $L^1$-data”, Nonlinear Anal., 64:8 (2006), 1885–1895 | DOI | MR | Zbl

[5] Boccardo L., Gallouet T., “Nonlinear elliptic equations with right hand side measures”, Commun. Partial Diff. Eq., 17:3-4 (1992), 641–655 | DOI | MR | Zbl

[6] Kovalevskii A.A., Skrypnik I.I., Shishkov A.E., Singulyarnye resheniya nelineinykh ellipticheskikh i parabolicheskikh uravnenii, Naukova dumka, Kiev, 2010, 499 pp. | MR

[7] Boccardo L., Gallouet T., “$W^{1,1}_0$ solutions in some borderline cases of Calderon-Zygmund theory”, J. Diff. Eq., 253:9 (2012), 2698–2714 | DOI | MR | Zbl

[8] Boccardo L., Gallouet T., “Summability of the solutions of nonlinear elliptic equations with right hand side measures”, J. Convex Anal., 3:2 (1996), 361–365 | MR | Zbl

[9] Kovalevskii A.A., “Apriornye svoistva reshenii nelineinykh uravnenii s vyrozhdayuscheisya koertsitivnostyu i $L^1$-dannymi”, Sovremennaya matematika. Fundamentalnye napravleniya, 16 (2006), 47–67