Mots-clés : Gabriel graph
@article{TIMM_2019_25_1_a5,
author = {K. S. Kobylkin},
title = {Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {62--77},
year = {2019},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a5/}
}
TY - JOUR AU - K. S. Kobylkin TI - Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 62 EP - 77 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a5/ LA - ru ID - TIMM_2019_25_1_a5 ER -
%0 Journal Article %A K. S. Kobylkin %T Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks %J Trudy Instituta matematiki i mehaniki %D 2019 %P 62-77 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a5/ %G ru %F TIMM_2019_25_1_a5
K. S. Kobylkin. Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a5/
[1] Agarwal P., Pan J., “Near-linear algorithms for geometric hitting sets and set covers”, Proc. of 30th Ann. Symp. on Comput. Geom., 2014, 271–279 | MR | Zbl
[2] Alon N., “A Non-linear lower bound for planar epsilon-nets”, Discr. Comput. Geom., 47:2 (2012), 235–244 | DOI | MR | Zbl
[3] Antunes D., Mathieu C., Mustafa N., “Combinatorics of local search: An optimal 4-local Hall's theorem for planar graphs”, Proc. of 25th Ann. Eur. Symp. on Alg. (ESA), no. 87, 2017, 8:1-8:13 | DOI | MR
[4] Biniaz A., Liu P., Maheshwari A., Smid M., “Approximation algorithms for the unit disk cover problem in 2D and 3D”, Comput. Geom., 60 (2017), 8–18 | DOI | MR | Zbl
[5] Bus N., Garg S., Mustafa N., Ray S., “Limits of local search: Quality and efficiency”, Discr. Comput. Geom., 57:3 (2017), 607–624 | DOI | MR | Zbl
[6] Dash D., Bishnu A., Gupta A., Nandy S. C., “Approximation algorithms for deployment of sensors for line segment coverage in wireless sensor networks”, Wireless Networks, 19:5 (2013), 857–870 | DOI
[7] Efrat A., Katz M. J., Nielsen F., Sharir M., “Dynamic data structures for fat objects and their applications”, Comput. Geom., 15 (2000), 215–227 | DOI | MR | Zbl
[8] Jaromczyk J. W., Toussaint G. T., “Relative neighborhood graphs and their relatives”, Proc. IEEE, 80:9 (1992), 1502–1517 | DOI
[9] Kobylkin K. S., “Stabbing line segments with disks: Complexity and approximation algorithms”, Lect. Notes Comp. Sci, 10716 (2017), 356–367 | DOI
[10] Kobylkin K. S., “Constant factor approximation for intersecting line segments with disks”, Lect. Notes Comp. Sci, 11353 (2019), 447–454 | DOI
[11] Matula D. W., Sokal R. R., “Properties of Gabriel graphs relevant to geographic variation research and clustering of points in the plane”, Geogr. Anal., 12:3 (1980), 205–222 | DOI
[12] Madireddy R. R., Mudgal A., “Stabbing line segments with disks and related problems”, Proc. of 28th Canadian Conf. on Comput. Geom., 2016, 201–207
[13] Mustafa N., Ray S., “Improved results on geometric hitting set problems”, Discr. Comput. Geom., 44:4 (2010), 883–895 | DOI | MR | Zbl
[14] Pyrga E., Ray S., “New existence proofs for $\varepsilon$-nets”, Proc. of 24th Ann. Symp. on Comput. Geom., 2008, 199–207 | DOI | MR | Zbl