On the solvability of a finite group with seminormal or subnormal Schmidt subgroups of one of its maximal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 55-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Schmidt group is a finite non-nilpotent group all of whose proper subgroups are nilpotent. A group with a nilpotent maximal subgroup is known to be solvable if the derived subgroup of a Sylow 2-subgroup of a maximal subgroup is contained in the center of the Sylow 2-subgroup. If a maximal subgroup of a group is non-nilpotent, then it has a Schmidt subgroup. The structure of a group and, in particular, its solvability, depend on the properties of Schmidt subgroups of its maximal subgroup. In this paper, we establish the solvability of a finite group such that some Schmidt subgroups of its maximal subgroup are seminormal or subnormal in the group.
Keywords: finite group, Schmidt subgroup, subnormal subgroup, seminormal subgroup, maximal subgroup.
Mots-clés : solvable group
@article{TIMM_2019_25_1_a4,
     author = {E. V. Zubei},
     title = {On the solvability of a finite group with seminormal or subnormal {Schmidt} subgroups of one of its maximal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {55--61},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a4/}
}
TY  - JOUR
AU  - E. V. Zubei
TI  - On the solvability of a finite group with seminormal or subnormal Schmidt subgroups of one of its maximal subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 55
EP  - 61
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a4/
LA  - ru
ID  - TIMM_2019_25_1_a4
ER  - 
%0 Journal Article
%A E. V. Zubei
%T On the solvability of a finite group with seminormal or subnormal Schmidt subgroups of one of its maximal subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 55-61
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a4/
%G ru
%F TIMM_2019_25_1_a4
E. V. Zubei. On the solvability of a finite group with seminormal or subnormal Schmidt subgroups of one of its maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 55-61. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a4/

[1] Monakhov V.S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] Huppert B., Endliche gruppen I., Springer, Berlin; Heidelberg; N Y, 1967, 796 pp. | DOI | MR | Zbl

[3] Thompson J., “Finite groups with fixed point-free automorphisms of prime order”, Proc. Nat. Sci., U.S.A, 45:4 (1959), 578–581 | DOI | MR | Zbl

[4] Thompson J., “A special class of non-solvable groups”, Math. Z., 72 (1960), 458–462 | DOI | MR | Zbl

[5] Belonogov V.A., “Odin priznak razreshimosti grupp chetnogo poryadka”, Sib. mat. zhurn., 7:2 (1966), 458–459 | Zbl

[6] Monakhov V.S., “Nekotorye priznaki razreshimosti grupp”, Dokl. AN BSSR, 14:11 (1970), 986–988 | Zbl

[7] Monakhov V.S., “O vliyanii svoistv maksimalnykh podgrupp na stroenie konechnoi gruppy”, Mat. zametki, 11:2 (1972), 183–190 | Zbl

[8] Baumann B., “Endliche nichtauflösbare gruppen mit einer nilpotenten maximal untergruppen”, J. Algebra, 38 (1976), 119–135 | DOI | MR | Zbl

[9] Monakhov V.S., “Konechnye gruppy s polunormalnoi khollovoi podgruppoi”, Mat. zametki, 80:4 (2006), 573–581 | DOI | Zbl

[10] Guo W., “Finite groups with seminormal Sylow subgroups”, Acta Mathematica Sinica, 24:10 (2008), 1751–1758 | DOI | MR

[11] Knyagina V.N., Monakhov V.S., “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | MR | Zbl

[12] Knyagina V.N., “O perestanovochnosti $n$-maksimalnykh podgrupp c $p$-nilpotentnymi podgruppami Shmidta”, Tr. In-ta matematiki NAN RB, 24:1 (2016), 34–37 | MR | Zbl

[13] Berkovich Ya. G., Palchik E. M., “O perestanovochnosti podgrupp konechnoi gruppy”, Sib. mat. zhurn., 8:4 (1967), 741–753

[14] Knyagina V. N., Monakhov V. S., “O perestanovochnosti silovskikh podgrupp s podgruppami Shmidta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 130–139

[15] Zubei E.V., Knyagina V.N., Monakhov V.S., “O razreshimosti konechnoi gruppy s $S$-polunormalnymi podgruppami Shmidta”, Ukr. mat. zhurn., 70:11 (2018), 1511–1518 | MR

[16] Knyagina V.N., Monakhov V.S., “O konechnykh gruppakh s nekotorymi cubnormalnymi podgruppami Shmidta”, Sib. mat. zhurn., 45:6 (2004), 1316–1322 | MR | Zbl

[17] Vedernikov V.A., “Konechnye gruppy s subnormalnymi podgruppami Shmidta”, Algebra i logika, 46:6 (2007), 669–687 | MR | Zbl

[18] Al-Sharo Kh. A., Skiba A.N., “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Commun. Algebra, 45:10 (2017), 4158–4165 | DOI | MR | Zbl

[19] Shmidt O.Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31 (1924), 366–372 | Zbl

[20] Monakhov V.S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Tr. Ukr. mat. kongressa, Cek. No1 (2001), In-t matematiki NAHU, Kiev, 2002, 81–90 | Zbl

[21] Berkovich Ya.G., “Teorema o nenilpotentnykh razreshimykh podgruppakh konechnoi gruppy”, Konechnye gruppy, ed. red. Ya. G. Berkovich, Nauka i tekhnika, Minsk, 1966, 24–39

[22] Monakhov V.S., “O podgruppakh Shmidta konechnykh grupp”, Voprosy algebry, 1998, no. 13, 153–171

[23] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, Minsk, 1978, 271 pp.