On the existence and estimates of solutions to functional equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 45-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the issues of solvability of operator inclusions in partially ordered spaces. We use the notion of ordered covering of multivalued mappings proposed by A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy in their paper “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology Appl. 201, 330-343 (2016). A statement on the preservation of properties of an ordered covering under antitone perturbations is proved. Conditions for an ordered covering of the multivalued Nemytskii operator acting from the space of essentially bounded functions to the space of measurable functions are obtained. More exactly, it is established that, if the multivalued mapping $f(t,x)$ is orderly covering in the second argument (in the space $\mathbb{R}^n$), then the corresponding Nemytskii operator (defined as the set of measurable sections of the mapping $f(t,x(t))$) is also orderly covering. These results are used to study a functional inclusion with a deviating argument of the form $0\in g(t,x(h(t)),x(t))$. It is assumed that the multivalued mapping $g(t,x,y)$ is nonincreasing in the second argument and is orderly covering in the third argument. For this inclusion, a solution existence theorem is proved and estimates of solutions are obtained.
Keywords: ordered space, multivalued orderly covering mapping, multivalued Nemytskii operator, space of measurable functions, functional inclusion
Mots-clés : existence of a solution.
@article{TIMM_2019_25_1_a3,
     author = {E. S. Zhukovskiy and E. M. Yakubovskaya},
     title = {On the existence and estimates of solutions to functional equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {45--54},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
AU  - E. M. Yakubovskaya
TI  - On the existence and estimates of solutions to functional equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 45
EP  - 54
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/
LA  - ru
ID  - TIMM_2019_25_1_a3
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%A E. M. Yakubovskaya
%T On the existence and estimates of solutions to functional equations
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 45-54
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/
%G ru
%F TIMM_2019_25_1_a3
E. S. Zhukovskiy; E. M. Yakubovskaya. On the existence and estimates of solutions to functional equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/

[1] Arutyunov A.V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. AN, 416:2 (2007), 151–155 | Zbl

[2] Avakov E.R., Arutyunov A.V., Zhukovskii E.S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differents. uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[3] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[4] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Coincidence points principle for mappings in partially ordered spaces”, Topology Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl

[5] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology Appl., 201 (2016), 330–343 | DOI | MR | Zbl

[6] Zhukovskii E.S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differents. uravneniya, 52:12 (2016), 1610–1627 | DOI | MR

[7] Zhukovskii E.S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra i analiz, 30:1 (2018), 96–127

[8] Zhukovskii E.S., Pluzhnikova E.A., Yakubovskaya E.M., “Ob ustoichivosti uporyadochennogo nakryvaniya mnogoznachnykh otobrazhenii pri antitonnykh vozmuscheniyakh”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 21:6 (2016), 1969–1973 | DOI

[9] Yakubovskaya E.M., “O funktsionalnykh vklyucheniyakh v uporyadochennykh prostranstvakh”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 22:3 (2017), 611–614 | DOI

[10] Arutyunov A., de Oliveira V.A., Pereira F. L., Zhukovskiy E., Zhukovskiy S., “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143 | DOI | MR | Zbl

[11] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (216) (1980), 11–46 | MR | Zbl

[12] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, v. 1, IL, M., 1962, 896 pp.

[13] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, Moskva, 2011, 224 pp.

[14] Zhukovskii E.S., Panasenko E.A., “Opredelenie metriki prostranstva $\mathrm{clos}_{\varnothing}(X)$ zamknutykh podmnozhestv metricheskogo prostranstva X i svoistva otobrazhenii so znacheniyami v $\mathrm{clos}_{\varnothing}(\mathbb{R}^n)$”, Mat. sb., 205:9 (2014), 65–96 | DOI | MR | Zbl

[15] Krein S.G., Funktsionalnyi analiz, Ser.: Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp.