Voir la notice du chapitre de livre
Mots-clés : existence of a solution.
@article{TIMM_2019_25_1_a3,
author = {E. S. Zhukovskiy and E. M. Yakubovskaya},
title = {On the existence and estimates of solutions to functional equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {45--54},
year = {2019},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/}
}
TY - JOUR AU - E. S. Zhukovskiy AU - E. M. Yakubovskaya TI - On the existence and estimates of solutions to functional equations JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 45 EP - 54 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/ LA - ru ID - TIMM_2019_25_1_a3 ER -
E. S. Zhukovskiy; E. M. Yakubovskaya. On the existence and estimates of solutions to functional equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a3/
[1] Arutyunov A.V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. AN, 416:2 (2007), 151–155 | Zbl
[2] Avakov E.R., Arutyunov A.V., Zhukovskii E.S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differents. uravneniya, 45:5 (2009), 613–634 | MR | Zbl
[3] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl
[4] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Coincidence points principle for mappings in partially ordered spaces”, Topology Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl
[5] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology Appl., 201 (2016), 330–343 | DOI | MR | Zbl
[6] Zhukovskii E.S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differents. uravneniya, 52:12 (2016), 1610–1627 | DOI | MR
[7] Zhukovskii E.S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra i analiz, 30:1 (2018), 96–127
[8] Zhukovskii E.S., Pluzhnikova E.A., Yakubovskaya E.M., “Ob ustoichivosti uporyadochennogo nakryvaniya mnogoznachnykh otobrazhenii pri antitonnykh vozmuscheniyakh”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 21:6 (2016), 1969–1973 | DOI
[9] Yakubovskaya E.M., “O funktsionalnykh vklyucheniyakh v uporyadochennykh prostranstvakh”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 22:3 (2017), 611–614 | DOI
[10] Arutyunov A., de Oliveira V.A., Pereira F. L., Zhukovskiy E., Zhukovskiy S., “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143 | DOI | MR | Zbl
[11] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (216) (1980), 11–46 | MR | Zbl
[12] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, v. 1, IL, M., 1962, 896 pp.
[13] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, Moskva, 2011, 224 pp.
[14] Zhukovskii E.S., Panasenko E.A., “Opredelenie metriki prostranstva $\mathrm{clos}_{\varnothing}(X)$ zamknutykh podmnozhestv metricheskogo prostranstva X i svoistva otobrazhenii so znacheniyami v $\mathrm{clos}_{\varnothing}(\mathbb{R}^n)$”, Mat. sb., 205:9 (2014), 65–96 | DOI | MR | Zbl
[15] Krein S.G., Funktsionalnyi analiz, Ser.: Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp.