Exact solutions of an inverse optimal stabilization problem for systems with aftereffect of neutral type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 35-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal stabilization problem is considered for systems of differential equations with aftereffect of neutral type. To simplify the representation of a continuous quadratic functional, an isomorphism of functional spaces is used. The optimal stabilization problem is formulated in a functional space of states with a special metric. A statement of the inverse optimal stabilization problem is presented; this statement is related to the recovery of a system with a given representation of an optimal stabilizing control. Sufficient conditions for the solvability of the inverse problem are obtained, and conditions under which the inverse problem admits analytical solutions are specified. A method for finding exact solutions to this problem is proposed. For systems of differential equations with delay-type aftereffect, exact solutions of the inverse problem were obtained earlier. An example of the exact solution of the inverse problem is given for a system of differential equations with aftereffect of neutral type.
Keywords: differential equations with aftereffect of neutral type, optimal stabilization
Mots-clés : Riccati equation.
@article{TIMM_2019_25_1_a2,
     author = {Yu. F. Dolgii},
     title = {Exact solutions of an inverse optimal stabilization problem for systems with aftereffect of neutral type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--44},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a2/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
TI  - Exact solutions of an inverse optimal stabilization problem for systems with aftereffect of neutral type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 35
EP  - 44
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a2/
LA  - ru
ID  - TIMM_2019_25_1_a2
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%T Exact solutions of an inverse optimal stabilization problem for systems with aftereffect of neutral type
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 35-44
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a2/
%G ru
%F TIMM_2019_25_1_a2
Yu. F. Dolgii. Exact solutions of an inverse optimal stabilization problem for systems with aftereffect of neutral type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a2/

[1] Krasovskii N.N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikladnaya matematika i mekhanika, 26:1 (1962), 39–51

[2] Gibson J.S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optim., 21:5 (1983), 95–135 | DOI | MR

[3] Delfour M.C., McCalla C., Mitter S.K., “Stability and the infinite-time quadratic cost problem for linear hereditary differential systems”, SIAM J. Control, 13:1 (1975), 48–88 | DOI | MR | Zbl

[4] Andreeva E.A., Kolmanovskii V.B., Shaikhet L.E., Upravlenie sistemami s posledeistviem, Nauka, Moskva, 1992, 336 pp. | MR

[5] Dolgii Yu.F., “K stabilizatsii lineinykh avtonomnykh sistem differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Avtomatika i telemekhanika, 2007, no. 10, 92–105 | Zbl

[6] Zhelonkina N.I., Lozhnikov A.B., Sesekin A.N., “Ob optimalnoi stabilizatsii impulsnym upravleniem lineinykh sistem s posledeistviem”, Avtomatika i telemekhanika, 2013, no. 11, 39–48 | MR | Zbl

[7] Yanushevsky R.T., “Optimal control of linear differential-difference systems of neutral type”, Int. J. Control, 49:6 (1989), 1835–1850 | DOI | MR | Zbl

[8] Dolgii Yu.F., “Optimalnaya stabilizatsiya sistem differentsialnykh uravnenii s posledeistviem neitralnogo tipa”, Tr. Mezhdunar. konf. “Dinamika sistem i protsessy upravleniya”, 2015, 155–162