Controlled Volterra functional equations and the contraction mapping principle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 262-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Earlier the author proposed a rather general form of describing \it{controlled initial-boundary value problems} (CIBVPs) by means of Volterra functional equations $$ z(t)=f\left(t,A[z](t),v(t)\right),\quad t\equiv \mathrm{col}\{t^{1},\ldots,t^{n}\} \in \Pi\subset{\mathbb R}^n,\quad z\in L_p^m\left( \Pi \right), $$ where $\Pi$ is a given bounded set, $f(.,.,.):\Pi \times {\mathbb R}^l\times {\mathbb R}^s\rightarrow {\mathbb R}^m$, $v(.) \in {\mathcal D} \subset L_k^s$ is a control, and $A:L_p^m\left( \Pi \right)\rightarrow L_q^l\left( \Pi \right)$ is a linear operator with the Volterra property on some system $T$ of subsets of $\Pi$ in the sense that for any $H\in T$ the restriction $\left. A \left[z \right] \right |_H$ does not depend on the values of $z| _{\Pi\backslash H}$; here $p,q,k\in \left[ 1,+\infty \right]$. This definition of the Volterra property is a multidimensional generalization of Tikhonov's known definition of a functional operator of Volterra type. Various CIBVPs for nonlinear evolution equations (parabolic, hyperbolic, integrodifferential, with delays, and others) are reduced by the inversion of the principal part to such functional equations. This description of CIBVPs is adequate for many problems of the theory of optimal control of distributed parameter systems. In particular, based on this description, the author found a scheme for deriving sufficient conditions for the stability (under a perturbation of the control) of the existence of global solutions to CIBVPs. The scheme employs the extension of local solutions (i.e., solutions on sets $H\in T$) of a functional equation along a finite chain of sets from the family $T$ ordered by inclusion. This process is realized with the use of a special theorem of the existence of local solutions based on the contraction mapping principle. In the case $p=q=k=\infty$, under natural assumptions, the possibility of applying this principle is provided by the fact that the right-hand side operator $\Phi_{v}[z\left(.\right)]\left(t\right)\equiv f\left(t,A[z](t),v(t)\right)$ satisfies the operator Lipschitz condition with a quasinilpotent “Lipschitz operator”. This allows to introduce, using well-known results from functional analysis, a norm in the space $L_{\infty}^m(H)$ equivalent to the usual norm in which the right-hand side operator is contractive. In the general case $1\leq p,q,k\leq\infty$, which covers a much wider class of CIBVPs, the right-hand side operator may not satisfy such operator Lipschitz condition. In this case, the introduction of an equivalent norm of the space $L_p^m(H)$ required for the application of the contraction mapping principle is provided by \it{the theorem on an equivalent norm} proved in the paper. The theorem is based on the notion of \it{superequipotential quasinilpotency} of a family of linear operators acting in a Banach space. A constructive general test is proved for the superequipotential quasinilpotency of a family of operators acting in a Banach ideal space of measurable functions. Sufficient conditions of superequipotential quasinilpotency, which are convenient for applications, are obtained in the case of Lebesgue spaces.
Keywords: controllable Volterra functional equation, contraction mapping principle, equipotentially quasinilpotent family of operators, theorem on an equivalent norm.
@article{TIMM_2019_25_1_a19,
     author = {V. I. Sumin},
     title = {Controlled {Volterra} functional equations and the contraction mapping principle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {262--278},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a19/}
}
TY  - JOUR
AU  - V. I. Sumin
TI  - Controlled Volterra functional equations and the contraction mapping principle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 262
EP  - 278
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a19/
LA  - ru
ID  - TIMM_2019_25_1_a19
ER  - 
%0 Journal Article
%A V. I. Sumin
%T Controlled Volterra functional equations and the contraction mapping principle
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 262-278
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a19/
%G ru
%F TIMM_2019_25_1_a19
V. I. Sumin. Controlled Volterra functional equations and the contraction mapping principle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 262-278. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a19/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[2] Afanasev A.P., Dikusar V.V., Milyutin A.A., Chukanov S.A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, 320 pp. | MR

[3] Sumin V.I., Optimizatsiya upravlyaemykh obobschennykh volterrovykh sistem, dis. $\dots$ kand. fiz.-mat. nauk, Gork. gos. un-t im. N. I. Lobachevskogo, Gorkii, 1975, 158 pp.

[4] Sumin V.I., “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN, 305:5 (1989), 1056–1059 | MR | Zbl

[5] Tikhonov A.N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byull. MGU. Sekts. A, 1:8 (1938), 1–25 | Zbl

[6] Sumin V.I., “Ravnostepennaya kvazinilpotentnost: opredeleniya, priznaki, primery primeneniya”, Vestn. Tambov. un-ta. Estestvennye i tekhnicheskie nauki, 15:1 (2010), 453–466

[7] Plotnikov V.I., Sumin V.I., “Optimizatsiya raspredelennykh sistem v lebegovom prostranstve”, Sib. mat. zhurn., 22:6 (1981), 142–161 | MR | Zbl

[8] Sumin V.I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 30:1 (1990), 3–21 | MR | Zbl

[9] Sumin V.I., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii upravlyaemykh kraevykh zadach”, Differents. uravneniya, 26:12 (1990), 2097–2109 | MR | Zbl

[10] Sumin V.I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Izd-vo NNGU, Nizhnii Novgorod, 1992, 110 pp.

[11] Sumin V.I., “Problema ustoichivosti suschestvovaniya globalnykh reshenii upravlyaemykh kraevykh zadach i volterrovy funktsionalnye uravneniya”, Vestn. Nizhegorod. un-ta. Matematika, 2003, no. 1, 91–107 | Zbl

[12] Lisachenko I.V., Sumin V.I., “Nelineinaya upravlyaemaya zadacha Gursa - Darbu: usloviya sokhraneniya globalnoi razreshimosti”, Differents. uravneniya, 47:6 (2011), 858–870 | MR | Zbl

[13] Korzhavina M.S., Sumin V.I., “O nachalno-kraevoi zadache dlya polulineinogo parabolicheskogo uravneniya s upravlyaemoi glavnoi chastyu”, Vestn. Tambov. un-ta. Estestvennye i tekhnicheskie nauki, 23:122 (2018), 317–324 | DOI

[14] Chernov A.V., Volterrovy operatornye uravneniya i ikh primenenie v teorii optimizatsii giperbolicheskikh sistem, dis. $\dots$ kand. fiz.-mat. nauk, Nizhegorod. gos. un-t im. N. I. Lobachevskogo, Nizhnii Novgorod, 2000, 177 pp.

[15] Chernov A.V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1616–1629 | MR | Zbl

[16] Chernov A.V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychisl. matematiki i mat. fiziki, 52:8 (2012), 1400–1414 | MR | Zbl

[17] Chernov A.V., “O gladkikh konechnomernykh approksimatsiyakh raspredelennykh optimizatsionnykh zadach s pomoschyu diskretizatsii upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 53:12 (2013), 2029–2043 | DOI | MR | Zbl

[18] Chernov A.V., “On Volterra functional operator games on a given set”, Automat. Remote Control, 75:4 (2014), 787–803 | DOI | MR

[19] Chernov A.V., “Preservation of the solvability of a semilinear global electric circuit equation”, Comput. Math. Math. Physics, 58:12 (2018), 2018–2030 | DOI | MR

[20] Sumin V.I., Chernov A.V., “Volterrovy funktsionalno-operatornye uravneniya v teorii optimizatsii raspredelennykh sistem”, Dinamika sistem i protsessy upravleniya, Tr. Mezhdunar. konf., posvyaschennoi 90-letiyu so dnya rozhd. akad. N. N. Krasovskogo (Ekaterinburg, 2014 g.), IMM UrO RAN; URFU, Ekaterinburg, 2015, 293–300

[21] Sumin V., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, IFAC PapersOnLine, 51:32 (2018), 759–764 | DOI

[22] Sumin V.I., “Volterrovy funktsionalno-operatornye uravneniya i raspredelennye zadachi optimizatsii”, Vestn. Tambov. un-ta. Estestvennye i tekhnicheskie nauki, 23:124 (2018), 745–756

[23] Sumin V.I., “Volterrovy funktsionalnye uravneniya i optimizatsiya raspredelennykh sistem”, Optimalnoe upravlenie i differentsialnye igry, Materialy Mezhdunar. konf., posvyaschennoi 110-letiyu so dnya rozhd. Lva Semenovicha Pontryagina (Moskva, 2018 g.), MIAN im. V. A. Steklova RAN; MAKS Press, M., 2018, 266–268 | DOI

[24] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp.

[25] Sumin V.I., “K probleme singulyarnosti raspredelennykh upravlyaemykh sistem. I”, Vestn. Nizhegorod. un-ta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 1999, no. 2 (21), 145–155

[26] Sumin V.I., “K probleme singulyarnosti raspredelennykh upravlyaemykh sistem. II”, Vestn. Nizhegorod. un-ta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2001, no. 1(23), 198–204 | Zbl

[27] Sumin V.I., “K probleme singulyarnosti raspredelennykh upravlyaemykh sistem. III”, Vestn. Nizhegorod. un-ta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2002, no. 1(25), 164–174

[28] Sumin V.I., “K probleme singulyarnosti raspredelennykh upravlyaemykh sistem. IV”, Vestn. Nizhegorod. un-ta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2004, no. 1(27), 185–193

[29] Sumin V.I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestn. Nizhegorod. un-ta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[30] Sumin V.I., “Usloviya ustoichivosti suschestvovaniya globalnykh reshenii upravlyaemykh kraevykh zadach dlya nelineinykh parabolicheskikh uravnenii”, Vestn. Tambov. un-ta. Estestvennye i tekhnicheskie nauki, 5:4 (2000), 493–495

[31] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp.

[32] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR

[33] Sumin V.I., Ob upravlyaemykh funktsionalnykh volterrovykh uravneniyakh v lebegovykh prostranstvakh, Deponirovano v VINITI 03.09.98 No2742 - V98, 96 pp.

[34] Lisachenko I.V., Sumin V.I., “Printsip maksimuma dlya terminalnoi zadachi optimizatsii sistemy Gursa - Darbu v klasse funktsii s summiruemoi smeshannoi proizvodnoi”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 21:2 (2011), 52–67 | DOI

[35] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 742 pp. | MR

[36] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, GIFML, M., 1962, 396 pp.

[37] Sumin V.I., “O funktsionalnykh volterrovykh uravneniyakh”, Izv. vuzov. Matematika, 1995, no. 9, 67–77 | Zbl

[38] Rota G.-C., Strang G., “A note on the joint spectral radius”, Indag. Math, 22 (1960), 379–381 | DOI | MR

[39] Shulman V.S., Turovskii Y.V., “Joint spectral radius, operator semigroups, and a problem of W. Wojtynski”, J. Func. Anal., 177:2 (2000), 383–441 | DOI | MR | Zbl

[40] Shulman V.S., Invariantnye podprostranstva i lineinye operatornye uravneniya, avtoreferat dis. $\dots$ dokt. fiz.-matem. nauk, Rossiiskii un-t druzhby narodov, M., 2009, 23 pp.

[41] Sumin V.I., Chernov A.V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[42] Korzhavina M.S., Sumin V.I., “O kraevoi zadache dlya nelineinogo parabolicheskogo uravneniya s upravleniem v nachalnom uslovii”, Sovremennye metody teorii kraevykh zadach, Materialy Mezhdunar. konf. “Pontryaginskie chteniya - XXIX”, posvyasch. 90-letiyu V .A. Ilina, Izd-vo MAKS-Press, M., 2018, 129–131

[43] Krasnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevskii P.E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR