On a class of problems of optimal impulse control for a continuity equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 229-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an impulse control problem for a special class of distributed dynamical systems. Such systems result from a relaxation (extension of the set of control processes) of a continuity equation driven by a vector field affine in the control, when there are only integral constraints on the input signals. Problems of this kind appear in the theory of ensemble control and control of multi-agent systems and systems with uncertain initial data. Prior to relaxation, the states of the system may be arbitrarily close to discontinuous curves in the space of probability measures, which leads to the unsolvability of the corresponding extremal problem. The relaxation produces a well-posed optimal control problem for generalized solutions of the continuity equation, which are measure-valued curves with bounded variation. Generalized solutions are described by means of a discontinuous time change in the trajectories of the characteristic system. Some function-theoretic properties of these solutions are studied, and their representation in terms of measure differential equations is obtained. The main result is a necessary optimality condition in the form of the maximum principle for the relaxed problem. Finally, we discuss the possibilities of applying the results for the development of numerical algorithms.
Keywords: multi-agent systems, continuity equation, impulse-trajectory relaxation, impulse control, optimal control, maximum principle, numerical algorithms for optimal control.
Mots-clés : ensemble control
@article{TIMM_2019_25_1_a17,
     author = {M. V. Staritsyn and N. I. Pogodaev},
     title = {On a class of problems of optimal impulse control for a continuity equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {229--244},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/}
}
TY  - JOUR
AU  - M. V. Staritsyn
AU  - N. I. Pogodaev
TI  - On a class of problems of optimal impulse control for a continuity equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 229
EP  - 244
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/
LA  - ru
ID  - TIMM_2019_25_1_a17
ER  - 
%0 Journal Article
%A M. V. Staritsyn
%A N. I. Pogodaev
%T On a class of problems of optimal impulse control for a continuity equation
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 229-244
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/
%G ru
%F TIMM_2019_25_1_a17
M. V. Staritsyn; N. I. Pogodaev. On a class of problems of optimal impulse control for a continuity equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 229-244. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/

[1] Ovseevich A.I., Fedorov A.K., “Asymptotically optimal feedback control for a system of linear oscillators”, Dokl. Akad. Nauk, 88:2 (2013), 613–617 | DOI | MR | Zbl

[2] Li J.-S., “Ensemble control of finite-dimensional time-varying linear systems”, IEEE Trans. Autom. Control, 56:2 (2011), 345–357 | DOI | MR | Zbl

[3] “Conservation laws in the modeling of moving crowds”, Hyperbolic problems: theory, numerics, applications, Proc. of the Fourteenth Internat. Conf. on Hyperbolic Problems, AIMS Ser. Appl. Math., 8, eds. eds. Rinaldo M. Colombo, Mauro Garavello, Magali Lécureux-Mercier, Nikolay Pogodaev, AIMS, Springfield, 2014, 467–474 | MR

[4] Fornasier M., Solombrino F., “Mean field optimal control”, ESAIM: Control, Optimization and Calculus of Variations, 20:4 (2014), 1123–1152 | DOI | MR | Zbl

[5] Marigonda A., Quincampoix M., “Mayer control problem with probabilistic uncertainty on initial positions”, J. Dierential Equations, 264:5 (2018), 3212–3252 | DOI | MR | Zbl

[6] Li J.-S., Khaneja N., “Ensemble control of Bloch equations”, IEEE Trans. Autom. Control, 54:3 (2009), 528–536 | DOI | MR | Zbl

[7] Arutyunov A., Karamzin D., Pereira F.L., “On a generalization of the impulsive control concept: controlling system jumps”, Discrete Contin. Dyn. Syst., 29:2 (2011), 403–415 | DOI | MR | Zbl

[8] Bressan Jr. A., Rampazzo F., “Impulsive control systems without commutativity assumptions”, J. Optim. Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl

[9] Dykhta V.A., Samsonyuk O.N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, Moskva, 2000, 256 pp. | MR

[10] Gurman V., “Extensions and global estimates for evolutionary discrete control systems”, Modelling and inverse problems of control for distributed parameter systems, Lecture Notes in Control and Inform. Sci., 154, eds. eds. A. Kurzhanski, I. Lasiecka, Springer, Berlin, 1991, 16–21 | DOI | MR

[11] Karamzin D.Y., de Oliveira V.A., Pereira F.L., Silva G.N., “On the properness of an impulsive control extension of dynamic optimization problems”, ESAIM Control Optim. Calc. Var., 21:3 (2015), 857–875 | DOI | MR | Zbl

[12] Miller B.M., Rubinovich E.Y., Impulsive control in continuous and discrete-continuous systems, Kluwer Academic/Plenum Publishers, N Y, 2003, 447 pp. | DOI | MR | Zbl

[13] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential Integral Eq., 8:2 (1995), 269–288 | MR | Zbl

[14] Rishel R.W., “An extended Pontryagin principle for control systems whose control laws contain measures”, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191–205 | DOI | MR | Zbl

[15] Warga J., Optimal control of differential and functional equations, Acad. Press, N Y; London, 1972, 531 pp. | MR | Zbl

[16] Zavalishchin S.T., Sesekin A.N., Dynamic impulse systems. Theory and applications, Math. Appl., 394, Kluwer Acad. Publ. Group, Dordrecht, 1997, 256 pp. | DOI | MR | Zbl

[17] Brockett R., “Notes on the control of the Liouville equation”, Control of partial differential equations, Lecture Notes in Math., 2048, eds. eds. P. Cannarsa, J.-M. Coron, Springer, Heidelberg, 2012, 101–129 | DOI | MR

[18] Ambrosio L., Savaré G., “Gradient flows of probability measures”, Handbook of differential equations: evolutionary equations, v. III, eds. eds. C.M. Dafermos, E. Feireisl, Elsevier, Amsterdam, 2007, 1–136 | MR | Zbl

[19] Santambrogio F., Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Birkhäuser Springer, Cham, 2015, 353 pp. | DOI | MR | Zbl

[20] Bonnet B., Rossi F., “The Pontryagin maximum principle in the Wasserstein space”, Calc. Var. Partial Differ. Equ, 58 (2019), article 11, 1–36 | DOI | MR | Zbl

[21] Averboukh Y., “Viability theorem for deterministic mean field type control systems”, Set-valued and variational analysis, 26:4 (2018), 993–1008 | DOI | MR | Zbl

[22] Staritsyn M., “On “discontinuous” continuity equation and impulsive ensemble control”, Systems and Control Letters, 118 (2018), 77–83 | DOI | MR | Zbl

[23] Staritsyn M.V., Pogodaev N.I., “On a class of impulsive control problems for continuity equations”, 17th IFAC Workshop on Control Applications of Optimization CAO 2018, IFAC-PapersOnLine, 51, no. 32, 2018, 468–473 | DOI | MR

[24] Pogodaev N., “Optimal control of continuity equations”, NoDEA Nonlinear Diff. Eq. Appl., 23 (2016), 21, 1–24 | DOI | MR

[25] Piccoli B., Rossi F., “Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes”, Acta Appl. Math., 124:1 (2013), 73–105 | DOI | MR | Zbl

[26] Pogodaev N., Staritsyn M., “Impulsive relaxation of continuity equations and modeling of colliding ensembles”, Optimization and Applications, Communications in Computer and Information Science, 974, eds. eds. Y. Evtushenko et al, 2019, 367–381 | DOI

[27] Ovsyannikov D.A., Kirin N.E., Matematicheskie metody upravleniya puchkami, Izd-vo Leningrad. un-ta, L., 1980, 228 pp.

[28] Pogodaev N., “Program strategies for a dynamic game in the space of measures”, Optim. Lett., 2018, 1–13 | DOI

[29] Kipka R.J., Ledyaev Y.S., “Extension of chronological calculus for dynamical systems on manifolds”, J. Differ. Equations, 258:5 (2015), 1765–1790 | DOI | MR | Zbl

[30] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vest. MGU. Matematika i mekhanika, 1959, no. 2, 25–32 | Zbl

[31] Ioffe A.I., Tikhomirov V.M., Teoriya ekstremalnykh zadach. Nelineinyi analiz i ego prilozhennya, Nauka, Moskva, 1974, 481 pp. | MR