Mots-clés : ensemble control
@article{TIMM_2019_25_1_a17,
author = {M. V. Staritsyn and N. I. Pogodaev},
title = {On a class of problems of optimal impulse control for a continuity equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {229--244},
year = {2019},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/}
}
TY - JOUR AU - M. V. Staritsyn AU - N. I. Pogodaev TI - On a class of problems of optimal impulse control for a continuity equation JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 229 EP - 244 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/ LA - ru ID - TIMM_2019_25_1_a17 ER -
M. V. Staritsyn; N. I. Pogodaev. On a class of problems of optimal impulse control for a continuity equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 229-244. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a17/
[1] Ovseevich A.I., Fedorov A.K., “Asymptotically optimal feedback control for a system of linear oscillators”, Dokl. Akad. Nauk, 88:2 (2013), 613–617 | DOI | MR | Zbl
[2] Li J.-S., “Ensemble control of finite-dimensional time-varying linear systems”, IEEE Trans. Autom. Control, 56:2 (2011), 345–357 | DOI | MR | Zbl
[3] “Conservation laws in the modeling of moving crowds”, Hyperbolic problems: theory, numerics, applications, Proc. of the Fourteenth Internat. Conf. on Hyperbolic Problems, AIMS Ser. Appl. Math., 8, eds. eds. Rinaldo M. Colombo, Mauro Garavello, Magali Lécureux-Mercier, Nikolay Pogodaev, AIMS, Springfield, 2014, 467–474 | MR
[4] Fornasier M., Solombrino F., “Mean field optimal control”, ESAIM: Control, Optimization and Calculus of Variations, 20:4 (2014), 1123–1152 | DOI | MR | Zbl
[5] Marigonda A., Quincampoix M., “Mayer control problem with probabilistic uncertainty on initial positions”, J. Dierential Equations, 264:5 (2018), 3212–3252 | DOI | MR | Zbl
[6] Li J.-S., Khaneja N., “Ensemble control of Bloch equations”, IEEE Trans. Autom. Control, 54:3 (2009), 528–536 | DOI | MR | Zbl
[7] Arutyunov A., Karamzin D., Pereira F.L., “On a generalization of the impulsive control concept: controlling system jumps”, Discrete Contin. Dyn. Syst., 29:2 (2011), 403–415 | DOI | MR | Zbl
[8] Bressan Jr. A., Rampazzo F., “Impulsive control systems without commutativity assumptions”, J. Optim. Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl
[9] Dykhta V.A., Samsonyuk O.N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, Moskva, 2000, 256 pp. | MR
[10] Gurman V., “Extensions and global estimates for evolutionary discrete control systems”, Modelling and inverse problems of control for distributed parameter systems, Lecture Notes in Control and Inform. Sci., 154, eds. eds. A. Kurzhanski, I. Lasiecka, Springer, Berlin, 1991, 16–21 | DOI | MR
[11] Karamzin D.Y., de Oliveira V.A., Pereira F.L., Silva G.N., “On the properness of an impulsive control extension of dynamic optimization problems”, ESAIM Control Optim. Calc. Var., 21:3 (2015), 857–875 | DOI | MR | Zbl
[12] Miller B.M., Rubinovich E.Y., Impulsive control in continuous and discrete-continuous systems, Kluwer Academic/Plenum Publishers, N Y, 2003, 447 pp. | DOI | MR | Zbl
[13] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential Integral Eq., 8:2 (1995), 269–288 | MR | Zbl
[14] Rishel R.W., “An extended Pontryagin principle for control systems whose control laws contain measures”, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191–205 | DOI | MR | Zbl
[15] Warga J., Optimal control of differential and functional equations, Acad. Press, N Y; London, 1972, 531 pp. | MR | Zbl
[16] Zavalishchin S.T., Sesekin A.N., Dynamic impulse systems. Theory and applications, Math. Appl., 394, Kluwer Acad. Publ. Group, Dordrecht, 1997, 256 pp. | DOI | MR | Zbl
[17] Brockett R., “Notes on the control of the Liouville equation”, Control of partial differential equations, Lecture Notes in Math., 2048, eds. eds. P. Cannarsa, J.-M. Coron, Springer, Heidelberg, 2012, 101–129 | DOI | MR
[18] Ambrosio L., Savaré G., “Gradient flows of probability measures”, Handbook of differential equations: evolutionary equations, v. III, eds. eds. C.M. Dafermos, E. Feireisl, Elsevier, Amsterdam, 2007, 1–136 | MR | Zbl
[19] Santambrogio F., Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Birkhäuser Springer, Cham, 2015, 353 pp. | DOI | MR | Zbl
[20] Bonnet B., Rossi F., “The Pontryagin maximum principle in the Wasserstein space”, Calc. Var. Partial Differ. Equ, 58 (2019), article 11, 1–36 | DOI | MR | Zbl
[21] Averboukh Y., “Viability theorem for deterministic mean field type control systems”, Set-valued and variational analysis, 26:4 (2018), 993–1008 | DOI | MR | Zbl
[22] Staritsyn M., “On “discontinuous” continuity equation and impulsive ensemble control”, Systems and Control Letters, 118 (2018), 77–83 | DOI | MR | Zbl
[23] Staritsyn M.V., Pogodaev N.I., “On a class of impulsive control problems for continuity equations”, 17th IFAC Workshop on Control Applications of Optimization CAO 2018, IFAC-PapersOnLine, 51, no. 32, 2018, 468–473 | DOI | MR
[24] Pogodaev N., “Optimal control of continuity equations”, NoDEA Nonlinear Diff. Eq. Appl., 23 (2016), 21, 1–24 | DOI | MR
[25] Piccoli B., Rossi F., “Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes”, Acta Appl. Math., 124:1 (2013), 73–105 | DOI | MR | Zbl
[26] Pogodaev N., Staritsyn M., “Impulsive relaxation of continuity equations and modeling of colliding ensembles”, Optimization and Applications, Communications in Computer and Information Science, 974, eds. eds. Y. Evtushenko et al, 2019, 367–381 | DOI
[27] Ovsyannikov D.A., Kirin N.E., Matematicheskie metody upravleniya puchkami, Izd-vo Leningrad. un-ta, L., 1980, 228 pp.
[28] Pogodaev N., “Program strategies for a dynamic game in the space of measures”, Optim. Lett., 2018, 1–13 | DOI
[29] Kipka R.J., Ledyaev Y.S., “Extension of chronological calculus for dynamical systems on manifolds”, J. Differ. Equations, 258:5 (2015), 1765–1790 | DOI | MR | Zbl
[30] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vest. MGU. Matematika i mekhanika, 1959, no. 2, 25–32 | Zbl
[31] Ioffe A.I., Tikhomirov V.M., Teoriya ekstremalnykh zadach. Nelineinyi analiz i ego prilozhennya, Nauka, Moskva, 1974, 481 pp. | MR