A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 219-228

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $X$ is a topological space and $Y$ is a separable metric space. Let these spaces be equipped with Borel $\sigma$-algebras $\mathcal{B}_X$ and $\mathcal{B}_Y$, respectively. Suppose that $P(x,B)$ is a stochastic transition kernel; i.e., the mapping $x \mapsto P(x,B)$ is measurable for all $B \in \mathcal{B}_Y$ and the mapping $B\mapsto P(x, B)$ is a probability measure for any $x \in X$. Denote by $\mathrm{supp}(P(x,\cdot))$ the topological support of the measure $B\mapsto P(x, B)$. If the transition kernel $P(x,B)$ satisfies the Feller property, i.e., the mapping $x \mapsto P(x,\cdot)$ is continuous in the weak topology on the space of probability measures, then the set-valued mapping $x\mapsto\mathrm{supp}(P(x,\cdot))$ is lower semicontinuous. Conversely, consider a set-valued mapping $x\mapsto S(x)$, where $x\in X$ and $S(x)$ is a nonempty closed subset of a Polish space $Y$. If $x \mapsto S(x)$ is lower semicontinuous, then, under some general assumptions on the space $X$, there exists a Feller transition kernel such that $\mathrm{supp}(P(x,\cdot))=S(x)$ for all $x\in X$.
Keywords: Feller property, topological support of a measure, lower semicontinuous set-valued mapping, continuous branch (selection).
Mots-clés : transition kernel
@article{TIMM_2019_25_1_a16,
     author = {S. N. Smirnov},
     title = {A {Feller} {Transition} {Kernel} with {Measure} {Supports} {Given} by a {Set-Valued} {Mapping}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/}
}
TY  - JOUR
AU  - S. N. Smirnov
TI  - A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 219
EP  - 228
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/
LA  - ru
ID  - TIMM_2019_25_1_a16
ER  - 
%0 Journal Article
%A S. N. Smirnov
%T A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 219-228
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/
%G ru
%F TIMM_2019_25_1_a16
S. N. Smirnov. A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 219-228. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/