A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 219-228
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $X$ is a topological space and $Y$ is a separable metric space.
Let these spaces be equipped with Borel $\sigma$-algebras $\mathcal{B}_X$ and $\mathcal{B}_Y$,
respectively. Suppose that $P(x,B)$ is a stochastic transition kernel; i.e., the mapping
$x \mapsto P(x,B)$ is measurable for all $B \in \mathcal{B}_Y$ and the mapping $B\mapsto P(x, B)$
is a probability measure for any $x \in X$. Denote by $\mathrm{supp}(P(x,\cdot))$ the topological support
of the measure $B\mapsto P(x, B)$. If the transition kernel $P(x,B)$ satisfies the Feller property,
i.e., the mapping $x \mapsto P(x,\cdot)$ is continuous in the weak topology on the space of
probability measures, then the set-valued mapping $x\mapsto\mathrm{supp}(P(x,\cdot))$ is lower semicontinuous.
Conversely, consider a set-valued mapping $x\mapsto S(x)$, where $x\in X$ and $S(x)$ is a nonempty
closed subset of a Polish space $Y$. If $x \mapsto S(x)$ is lower semicontinuous, then, under
some general assumptions on the space $X$, there exists a Feller transition kernel such that
$\mathrm{supp}(P(x,\cdot))=S(x)$ for all $x\in X$.
Keywords:
Feller property, topological support of a measure, lower semicontinuous set-valued mapping, continuous branch (selection).
Mots-clés : transition kernel
Mots-clés : transition kernel
@article{TIMM_2019_25_1_a16,
author = {S. N. Smirnov},
title = {A {Feller} {Transition} {Kernel} with {Measure} {Supports} {Given} by a {Set-Valued} {Mapping}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {219--228},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/}
}
TY - JOUR AU - S. N. Smirnov TI - A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 219 EP - 228 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/ LA - ru ID - TIMM_2019_25_1_a16 ER -
S. N. Smirnov. A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 219-228. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/