A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 219-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that $X$ is a topological space and $Y$ is a separable metric space. Let these spaces be equipped with Borel $\sigma$-algebras $\mathcal{B}_X$ and $\mathcal{B}_Y$, respectively. Suppose that $P(x,B)$ is a stochastic transition kernel; i.e., the mapping $x \mapsto P(x,B)$ is measurable for all $B \in \mathcal{B}_Y$ and the mapping $B\mapsto P(x, B)$ is a probability measure for any $x \in X$. Denote by $\mathrm{supp}(P(x,\cdot))$ the topological support of the measure $B\mapsto P(x, B)$. If the transition kernel $P(x,B)$ satisfies the Feller property, i.e., the mapping $x \mapsto P(x,\cdot)$ is continuous in the weak topology on the space of probability measures, then the set-valued mapping $x\mapsto\mathrm{supp}(P(x,\cdot))$ is lower semicontinuous. Conversely, consider a set-valued mapping $x\mapsto S(x)$, where $x\in X$ and $S(x)$ is a nonempty closed subset of a Polish space $Y$. If $x \mapsto S(x)$ is lower semicontinuous, then, under some general assumptions on the space $X$, there exists a Feller transition kernel such that $\mathrm{supp}(P(x,\cdot))=S(x)$ for all $x\in X$.
Keywords: Feller property, topological support of a measure, lower semicontinuous set-valued mapping, continuous branch (selection).
Mots-clés : transition kernel
@article{TIMM_2019_25_1_a16,
     author = {S. N. Smirnov},
     title = {A {Feller} {Transition} {Kernel} with {Measure} {Supports} {Given} by a {Set-Valued} {Mapping}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {219--228},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/}
}
TY  - JOUR
AU  - S. N. Smirnov
TI  - A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 219
EP  - 228
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/
LA  - ru
ID  - TIMM_2019_25_1_a16
ER  - 
%0 Journal Article
%A S. N. Smirnov
%T A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 219-228
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/
%G ru
%F TIMM_2019_25_1_a16
S. N. Smirnov. A Feller Transition Kernel with Measure Supports Given by a Set-Valued Mapping. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 219-228. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a16/

[1] Smirnov S.N., “Fellerovskii protsess”, Matematicheskaya entsiklopediya, v. 5, ed. red. I. M. Vinogradov, Izd-vo “Sovetskaya entsiklopediya”, M., 1985, 603–604

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[3] Tulcea I.C., “Mesures dans les espaces produits”, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat., 8:7 (1949), 208–211 | MR

[4] Michael E.A., “Continuous selections. I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR

[5] Lange K.L., “Borel sets of probability measures”, Pacific J. Math., 48:1 (1973), 141–162 | DOI | MR

[6] Vakhania N.N., Tarieladze V.I., Chobanyan S.A., Probability distributions on Banach spaces, D. Reidel Publ. Comp., Dordrecht, 1987, 482 pp. | MR | Zbl

[7] Hu S., Papageorgiou N., Handbook of multivalued analysis, v. I, Mathematics and Its Appl., 419, Theory, Springer, Berlin, 1997, 968 pp. | MR

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[9] Alexandroff A.D., “Additive set-functions in abstract spaces”, Mat. sb., 13 (55):2-3 (1943), 169–238 | MR | Zbl

[10] Ash R.B., Real analysis and probability, Acad. Press, N Y, 1972, 494 pp. | MR | Zbl

[11] Bogachev V.I., Osnovy teorii mery, v. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2003, 576 pp.

[12] Shiryaev A.N., Veroyatnost-1, MTsNMO, M., 2004, 520 pp.

[13] Weaver N., Lipschitz algebras, World Scientific Publishing Co. Pte. Ltd., Singapore, 1999, 223 pp. | MR | Zbl

[14] Hille S.C., Worm D.T.H., “Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures”, Integr. Equ. Oper. Theory, 63:3 (2009), 351–371 | DOI | MR | Zbl

[15] Dudley R.M., Real analysis and probability, Cambridge University Press, Cambridge, 2004, 555 pp. | MR

[16] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnyi analiz, Nauka, M., 1976, 543 pp. | MR

[17] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[18] Jain P.K., Khalil Ahmad, Ahuja Om P., Functional analysis, New Age International, New Delhi etc., 1995, 326 pp. | Zbl

[19] Prokhorov Yu.V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatnostei i ee primenenie, 1:2 (1956), 177–238 | MR | Zbl

[20] Dudley R.M., “Distances of probability measures and random variables”, Ann. Math. Statist., 39:5 (1968), 1503–1572 | DOI | MR

[21] Denkowski Z., Migorski S., Papageorgiou N.S., An Introduction to nonlinear analysis: Theory, Springer Science Business Media, N Y, 2003, 823 pp. | MR