On a problem of dynamic reconstruction under incomplete information
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 207-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of reconstructing an unknown external influence in a system of linear ordinary differential equations is investigated on the basis of the approach of the theory of dynamic inversion. A statement is considered in which the disturbance is reconstructed synchronously with the process from incomplete discrete information on a part of coordinates of the phase trajectory. A finite-step software-oriented solution algorithm based on the method of auxiliary closed-loop models is proposed, and its error is estimated. The novelty of the paper is that we consider the inverse problem for a dynamic system in which the disturbance to be reconstructed is subject to geometric constraints and is not included in the measured component.
Keywords: system of ordinary differential equations, incomplete information, controlled model.
Mots-clés : dynamic reconstruction
@article{TIMM_2019_25_1_a15,
     author = {V. L. Rozenberg},
     title = {On a problem of dynamic reconstruction under incomplete information},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--218},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a15/}
}
TY  - JOUR
AU  - V. L. Rozenberg
TI  - On a problem of dynamic reconstruction under incomplete information
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 207
EP  - 218
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a15/
LA  - ru
ID  - TIMM_2019_25_1_a15
ER  - 
%0 Journal Article
%A V. L. Rozenberg
%T On a problem of dynamic reconstruction under incomplete information
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 207-218
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a15/
%G ru
%F TIMM_2019_25_1_a15
V. L. Rozenberg. On a problem of dynamic reconstruction under incomplete information. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 207-218. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a15/

[1] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60

[2] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, L., 1995, 625 pp. | MR | Zbl

[3] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 305 pp.

[4] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1984, 456 pp.

[5] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 142 pp.

[6] Kryazhimskii A.V., Osipov Yu.S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Nekotorye zadachi upravleniya i ustoichivosti, eds. red. A. V. Kim, V. I. Maksimov, Izd-vo UrO AN SSSR, Sverdlovsk, 1989, 33–47 | MR

[7] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 291 pp.

[8] Blizorukova M.S., Maksimov V.I., “Ob odnoi zadache upravleniya pri nepolnoi informatsii”, Avtomatika i telemekhanika, 2006, no. 3, 131–142 | Zbl

[9] Maksimov V.I., “On dynamical reconstruction of an input in a linear system under measuring a part of coordinates”, J. Inverse Ill-Posed Problems, 26:3 (2018), 395–410 | DOI | MR | Zbl

[10] Rozenberg V.L., “Dinamicheskaya rekonstruktsiya vozmuschenii v kvazilineinom stokhasticheskom differentsialnom uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 58:7 (2018), 1121–1131 | DOI