On the continuous dependence of trajectories of a differential inclusion on initial approximations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 174-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a differential inclusion with an unbounded right-hand side $F$ in the case when this right-hand side satisfies conditions of measurable pseudo-Lipschitzness in a neighborhood of some fixed trajectory $\widehat{x}(\cdot)$. In the space of absolutely continuous functions, we prove a theorem on the existence of a continuous mapping from a certain set of pseudo-trajectories defined in a neighborhood of the trajectory $\widehat{x}(\cdot)$ to a set of trajectories of the differential inclusion with estimates determined by the set of pseudo-trajectories. For the given multivalued mapping $F$ and trajectory $\widehat{x}(\cdot)$, a variational differential inclusion is defined such that the graph of its right-hand side is the lower tangent cone to the graph of the right-hand side $F$ at points of the graph of the trajectory $\widehat{x}(\cdot)$. The existence of a continuous mapping from the set of trajectories of the variational differential inclusion to the set of trajectories of the original differential inclusion is proved with estimates. These properties are an important part of the direct method of deriving necessary optimality conditions in problems with constraints in the form of a differential inclusion.
Keywords: multivalued mapping, differential inclusion, derivative of a multivalued mapping, conditions of measurable pseudo-Lipschitzness of a multivalued mapping, necessary optimality conditions.
Mots-clés : tangent cone
@article{TIMM_2019_25_1_a13,
     author = {E. S. Polovinkin},
     title = {On the continuous dependence of trajectories of a differential inclusion on initial approximations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {174--195},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a13/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - On the continuous dependence of trajectories of a differential inclusion on initial approximations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 174
EP  - 195
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a13/
LA  - ru
ID  - TIMM_2019_25_1_a13
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T On the continuous dependence of trajectories of a differential inclusion on initial approximations
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 174-195
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a13/
%G ru
%F TIMM_2019_25_1_a13
E. S. Polovinkin. On the continuous dependence of trajectories of a differential inclusion on initial approximations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 174-195. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a13/

[1] Aubin J.-P., “Lipschitz behavior of solutions to convex minimization problems”, Math. Oper. Res., 9 (1984), 87–111 | DOI | MR | Zbl

[2] Ioffe A.D., “Existence and relaxation theorems for unbounded differential inclusions”, J. Convex Anal., 13:2 (2006), 353–362 | MR | Zbl

[3] Polovinkin E.S., “Differentsialnye vklyucheniya s izmerimo-psevdolipshitsevoi pravoi chastyu”, Tr. MIAN, 283, 2013, 121–141 | Zbl

[4] Clarke F. H., Necessary conditions in dynamic optimization, Memoirs of the American Math. Soc., 173, AMS, Providence, 2005, 130 pp. | DOI | MR

[5] Loewen Ph.D., Rockafellar P.T., “Optimal control of unbounded differential inclusions”, SIAM J. Control Optim., 32:2 (1994), 442–470 | DOI | MR | Zbl

[6] Vinter R.B., Optimal control, Birkhäuser, Boston, 2000, 507 pp. | DOI | MR | Zbl

[7] Polovinkin E.S., “The properties of continuity and differentiation of solution sets of Lipschetzean differential inclusions”, Modeling, Estimation and Control of Systems with Uncertainty, Ser. PSCT, 10, eds. eds. G.B.Di Masi, A. Gombani, A.B. Kurzhansky, Birkhäuser, Boston, 1991, 349–360 | DOI | MR

[8] Polovinkin E.S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2014, 524 pp.

[9] Polovinkin E.S., “Differentsialnye vklyucheniya s neogranichennoi pravoi chastyu i neobkhodimye usloviya optimalnosti”, Tr. MIAN, 291, 2015, 249–265 | Zbl

[10] Polovinkin E.S., “Time optimum problems for unbounded differential inclusion”, Proc. of the 16th IFAC Workshop on Contr. Appl. of Optim. (Garmisch-Partenkirchen, Germany, 6-9 October 2015), IFAC-PapersOnLine, 48, no. 25, 2015, 150–155 | DOI

[11] Polovinkin E.S., “Necessary optimality conditions for the Mayer problem with unbounded differential inclusion”, Proc. of the 17th IFAC Workshop on Contr. Appl. of Optim. (Yekaterinburg, Russia, 15-19 October, 2018), IFAC-PapersOnLine, 51, no. 32, 2018, 521–524 | DOI

[12] Lindenstrauss J., “A short proof of Lyapounov's convexity theorem”, J. Math. Mech., 15 (1966), 971–972 | MR | Zbl

[13] Colombo R.M., Fryszkowski A., Rzezuchowski T., Staicu V., “Continuous selections of solution sets of Lipschitzean differential inclusions”, Funkcialaj Ekvacioj, 34 (1991), 321–330 | MR | Zbl

[14] Fryszkowski A., Fixed point theory for decomposable sets, Kluwer Acad. Publ., Dordrecht; Boston, 2004, 209 pp. | DOI | MR | Zbl

[15] Fryszkowski A., Rzezuchowski T., “Continuous version of Filippov-Wazewski relaxation theorem”, J. Diff. Eqs., 94 (1992), 254–265 | DOI | MR

[16] Kuratowski K., Ryll-Nardzewski C., “A general theorem on selectors”, Bull. Polish Acad. Sc., 13 (1965), 397–403 | MR | Zbl

[17] Aubin J.-P., Frankowska H., Set-valued analisys, Birkhäuser, Boston; Basel; Berlin, 1990, 461 pp. | MR

[18] Polovinkin E.S., Smirnov G.V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Differents. uravneniya, 22:6 (1986), 944–954 | MR | Zbl

[19] Polovinkin E.S., Smirnov G.V., “O zadache bystrodeistviya dlya differentsialnykh vklyuchenii”, Differents. uravneniya, 22:8 (1986), 1351–1365 | MR | Zbl

[20] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp.

[21] Boltyanskii V.G., “Metod shatrov v teorii ekstremalnykh zadach”, Uspekhi mat. nauk, 30:3 (183) (1975), 3–55 | MR