Calculation of Elements of a Guiding Program Package for Singular Clusters of the Set of Initial States in the Package Guidance Problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 150-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A fixed-time package guidance problem is considered for a linear controlled dynamic system with a finite set of initial states. The control set is convex and compact and the target set is convex and closed. The paper focuses on the case where the set of initial states has singular clusters for which the existing algorithm for estimating the elements of a guiding program package is not applicable. It is suggested to consider a perturbed problem of extended program guidance with a smoothed control set. It is proved that the motions of the original and perturbed problems are close to each other at the terminal time; the corresponding estimates are provided. In the case of an extended target set with nonempty interior, it is also shown that a solution of the extended program guidance problem that is precisely guiding to the target set can be obtained by applying the existing algorithm for the perturbed problem with compressed target set. The suggested theoretical constructions are illustrated with a model example.
Keywords: incomplete information, linear dynamic system, guidance problem, program package, singular cluster, smooth approximation.
@article{TIMM_2019_25_1_a11,
     author = {S. M. Orlov and N. V. Strelkovskii},
     title = {Calculation of {Elements} of a {Guiding} {Program} {Package} for {Singular} {Clusters} of the {Set} of {Initial} {States} in the {Package} {Guidance} {Problem}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--165},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a11/}
}
TY  - JOUR
AU  - S. M. Orlov
AU  - N. V. Strelkovskii
TI  - Calculation of Elements of a Guiding Program Package for Singular Clusters of the Set of Initial States in the Package Guidance Problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 150
EP  - 165
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a11/
LA  - ru
ID  - TIMM_2019_25_1_a11
ER  - 
%0 Journal Article
%A S. M. Orlov
%A N. V. Strelkovskii
%T Calculation of Elements of a Guiding Program Package for Singular Clusters of the Set of Initial States in the Package Guidance Problem
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 150-165
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a11/
%G ru
%F TIMM_2019_25_1_a11
S. M. Orlov; N. V. Strelkovskii. Calculation of Elements of a Guiding Program Package for Singular Clusters of the Set of Initial States in the Package Guidance Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 150-165. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a11/

[1] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4 (2006), 25–76 | DOI | MR | Zbl

[2] Kryazhimskii A.V., Osipov Yu.S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 139–157 | MR

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Kryazhimskii A.V., Osipov Yu.S., “O razreshimosti zadach garantiruyuschego upravleniya dlya chastichno nablyudaemykh lineinykh dinamicheskikh sistem”, Tr. MIAN, 2012, no. 277, 152–167

[5] Kryazhimskii A.V., Strelkovskii N.V., “Programmnyi kriterii razreshimosti zadachi pozitsionnogo navedeniya s nepolnoi informatsiei. Lineinye upravlyaemye sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 132–147 | MR

[6] Strelkovskii N.V., “Postroenie strategii garantirovannogo pozitsionnogo navedeniya dlya lineinoi upravlyaemoi sistemy pri nepolnoi informatsii”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 2015, no. 3, 31–38 | MR

[7] Surkov P.G., “O zadache paketnogo navedeniya s nepolnoi informatsiei dlya lineinoi upravlyaemoi sistemy s zapazdyvaniem”, cb. nauch. tr., fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, no. 7, ed. pod red. Yu. S. Osipova, Izd. otdel fak-ta VMiK MGU; MAKS Press, M., 2016, 94–108

[8] Maksimov V.I., Surkov P. G., “O razreshimosti zadachi garantirovannogo paketnogo navedeniya na sistemu tselevykh mnozhestv”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 27:3 (2017), 344–354 | MR | Zbl

[9] Surkov P.G., “Zadacha paketnogo navedeniya s nepolnoi informatsiei pri integralnom signale nablyudeniya”, Sib. elektron. mat. izv., 15 (2018), 373–388 | Zbl

[10] Strelkovskii N.V., Orlov S.M., “Algoritm postroeniya garantiruyuschego paketa programm v zadache upravleniya pri nepolnoi informatsii”, Vestn. Mosk. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 2018, no. 2, 20–31 | MR

[11] Strelkovskii N.V., Orlov S.M., “A method for calculation of program package elements for singular clusters”, Materials Internat. Sonf. “Systems Analysis: Modeling and Control” in memory of Academician A. V. Kryazhimskii (Moscow, Russia, 2018), 97–99

[12] Gindes V.B., “Ob osobom upravlenii v optimalnykh sistemakh”, Izv. vuzov. Matematika, 1967, no. 7, 34–42 | MR | Zbl

[13] Avvakumov S.N., “Gladkaya approksimatsiya vypuklykh kompaktov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 4 (1996), 184–200 | Zbl

[14] Kiselëv Yu.N., Avvakumov S.N., Orlov M.V., Optimalnoe upravlenie. Lineinaya teoriya i prilozheniya, MAKS Press, M., 2007, 272 pp.

[15] Pontryagin L.S., “Lineinye differentsialnye igry”, Tr. MIAN, 185, 1988, 200–207 | MR | Zbl

[16] Avvakumov S.N., Kiselëv Yu.N., Orlov M.V., “Metody resheniya zadach optimalnogo upravleniya na osnove printsipa maksimuma Pontryagina”, Tr. MIAN, 211, 1995, 3–31 | MR | Zbl

[17] Avvakumov S.N., Kiselëv Yu.N., “Opornye funktsii nekotorykh spetsialnykh mnozhestv, konstruktivnye protsedury sglazhivaniya, geometricheskaya raznost”, cb. nauch. tr., fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, no. 1, eds. pod red. Yu. S. Osipova, A. V. Kryazhimskogo, Izd. otdel fak-ta VMiK MGU; MAKS Press, M., 2005, 24–110