Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 11-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-person zero-sum differential game is considered. The motion of the dynamic system is described by an ordinary differential equation with a Caputo fractional derivative of order $\alpha\in(0,1)$. The quality index consists of two terms: the first depends on the motion of the system realized by the terminal time and the second includes an integral estimate of the realizations of the players' controls. The positional approach is applied to formalize the game in the “strategy–counterstrategy” and “counterstrategy–strategy” classes as well as in the “strategy–strategy” classes under the additional saddle point condition in the small game. In each case, the existence of the value and of the saddle point of the game is proved. The proofs are based on an appropriate modification of the method of extremal shift to accompanying points, which takes into account the specific properties of fractional-order systems.
Keywords: fractional-order differential equation, Caputo derivative, differential game, game value, positional strategy, counterstrategy, extremal shift.
@article{TIMM_2019_25_1_a1,
     author = {M. I. Gomoyunov},
     title = {Extremal {Shift} to {Accompanying} {Points} in a {Positional} {Differential} {Game} for a {Fractional-Order} {System}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {11--34},
     year = {2019},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a1/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
TI  - Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 11
EP  - 34
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a1/
LA  - ru
ID  - TIMM_2019_25_1_a1
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%T Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 11-34
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a1/
%G ru
%F TIMM_2019_25_1_a1
M. I. Gomoyunov. Extremal Shift to Accompanying Points in a Positional Differential Game for a Fractional-Order System. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 1, pp. 11-34. http://geodesic.mathdoc.fr/item/TIMM_2019_25_1_a1/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[2] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[3] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.

[4] Krasovskii N.N., Krasovskii A.N., Control under lack of information, Birkhäuser, Berlin etc., 1995, 322 pp. | MR

[5] Osipov Yu.S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN, 196:4 (1971), 779–782 | Zbl

[6] Lukoyanov N.Yu., Funktsionalnye uravneniya Gamiltona - Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo UrFU, Ekaterinburg, 2011, 243 pp.

[7] Lukoyanov N.Yu., Gomoyunov M.I., Plaksin A.R., “Funktsionalnye uravneniya Gamiltona - Yakobi i differentsialnye igry dlya sistem neitralnogo tipa”, Dokl. AN, 477:3 (2017), 287–290 | DOI

[8] Averboukh Yu.V., “Krasovskii-Subbotin approach to mean field type differential games”, Dyn. Games Appl., 2018, 1–21 | DOI | MR

[9] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[10] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, N Y, 2006, 540 pp. | MR | Zbl

[11] Diethelm K., The analysis of fractional differential equations, Springer, Berlin, 2010, 247 pp. | DOI | MR | Zbl

[12] Gomoyunov M.I., “Solution to a zero-sum differential game with fractional dynamics via approximations”, Dyn. Games Appl., arXiv: 1902.02951

[13] Gomoyunov M.I., “Approximation of fractional order conflict-controlled systems”, Progr. Fract. Differ. Appl., 5:3 (2019), arXiv: 1805.10838

[14] Chikrii A., Matychyn I., “Riemann-Liouville, Caputo, and sequential fractional derivatives in differential games”, Advances in dynamic games: theory, applications, and numerical methods for differential and stochastic games, Birkhäuser, Boston, 2011, 61–81 | DOI | MR | Zbl

[15] Mamatov M., Alimov K., “Differential games of persecution of frozen order with separate dynamics”, J. Appl. Math. Phys., 6 (2018), 475–487 | DOI

[16] Bannikov A.S., “Uklonenie ot gruppy presledovatelei v zadache gruppovogo presledovaniya s drobnymi proizvodnymi i fazovymi ogranicheniyami”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 27:3 (2017), 309–314 | DOI | MR | Zbl

[17] Petrov N.N., “Odna zadacha gruppovogo presledovaniya s drobnymi proizvodnymi i fazovymi ogranicheniyami”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyut. nauki, 27:1 (2017), 54–59 | DOI | MR | Zbl

[18] Kartsatos A.G., Advanced ordinary differential equations, third edition, Hindawi Publ., N Y, 2005, 221 pp. | MR

[19] Diethelm K., Siegmund S., Tuan H.T., “Asymptotic behavior of solutions of linear multi-order fractional differential systems”, Fract. Calc. Appl. Anal., 20:5 (2017), 1165–1195 | DOI | MR | Zbl

[20] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 544 pp.

[21] Lin S., “Generalized Gronwall inequalities and their applications to fractional differential equations”, J. Inequal. Appl., 2013 (2013), 1–9 | DOI | MR

[22] Aghajani A., Jalilian Y., Trujillo J.J., “On the existence of solutions of fractional integro-differential equations”, Fract. Calc. Appl. Anal., 15:1 (2012), 44–69 | DOI | MR | Zbl

[23] Gomoyunov M.I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Frac. Calc. Appl. Anal., 21:5 (2018), 1238–1261 | DOI | MR

[24] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR