On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 126-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In Theorem 1, it is proved for a finite group $G$ with socle $L_2(2^m)\times L_2(2^n)$ and nilpotent subgroups $A$ and $B$ that the condition $\min_G(A,B)\ne 1$ implies that $n=m=2$ and the subgroups $A$ and $B$ are $2$-groups. Here the subgroup $\min_G(A,B)$ is generated by smallest-order intersections of the form $A\cap B^g$, $g\in G$, and the subgroup $\mathrm{Min}_G(A,B)$ is generated by all intersections of the form $A\cap B^g$, $g\in G$, that are minimal with respect to inclusion. In Theorem 2, for a finite group $G$ with socle $A_5\times A_5$ and a Sylow 2-subgroup $S$, we give a description of the subgroups $\min_G(S,S)$ and $\mathrm{Min}_G(S,S)$. On the basis of Theorem 2, in Theorem 3 for a finite group $G$ with socle $A_5\times A_5$ we describe up to conjugation all pairs of nilpotent subgroups $(A,B)$ of $G$ for which $\min_G(A,B)\ne 1$.
Keywords: finite groups, nilpotent subgroup, intersection of subgroups.
@article{TIMM_2018_24_4_a9,
     author = {V. I. Zenkov},
     title = {On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {126--134},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 126
EP  - 134
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/
LA  - ru
ID  - TIMM_2018_24_4_a9
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 126-134
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/
%G ru
%F TIMM_2018_24_4_a9
V. I. Zenkov. On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 126-134. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/