On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 126-134
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In Theorem 1, it is proved for a finite group $G$ with socle $L_2(2^m)\times L_2(2^n)$ and nilpotent subgroups $A$ and $B$ that the condition $\min_G(A,B)\ne 1$ implies that $n=m=2$ and the subgroups $A$ and $B$ are $2$-groups. Here the subgroup $\min_G(A,B)$ is generated by smallest-order intersections of the form $A\cap B^g$, $g\in G$, and the subgroup $\mathrm{Min}_G(A,B)$ is generated by all intersections of the form $A\cap B^g$, $g\in G$, that are minimal with respect to inclusion. In Theorem 2, for a finite group $G$ with socle $A_5\times A_5$ and a Sylow 2-subgroup $S$, we give a description of the subgroups $\min_G(S,S)$ and $\mathrm{Min}_G(S,S)$. On the basis of Theorem 2, in Theorem 3 for a finite group $G$ with socle $A_5\times A_5$ we describe up to conjugation all pairs of nilpotent subgroups $(A,B)$ of $G$ for which $\min_G(A,B)\ne 1$.
Keywords: finite groups, nilpotent subgroup, intersection of subgroups.
@article{TIMM_2018_24_4_a9,
     author = {V. I. Zenkov},
     title = {On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {126--134},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 126
EP  - 134
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/
LA  - ru
ID  - TIMM_2018_24_4_a9
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 126-134
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/
%G ru
%F TIMM_2018_24_4_a9
V. I. Zenkov. On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 126-134. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a9/

[1] Burnside W., “On groups of order $p^{\alpha}q^{\beta}$”, Proc. London Math. Soc., 2:1 (1904), 388–392 | DOI | MR | Zbl

[2] Burnside W., “On groups of order $p^{\alpha}q^{\beta}$ (second paper)”, Proc. London Math. Soc., 2:2 (1905), 432–437 | DOI | MR | Zbl

[3] Monakhov V.S., “Invariantnye podgruppy biprimarnykh grupp”, Mat. zametki, 18:6 (1975), 877–886 | MR | Zbl

[4] Kabanov V.V., Kondratev A.S., Silovskie 2-podgruppy konechnykh grupp, Izd-vo UrO RAN, Sverdlovsk, 1979, 155 pp.

[5] Zenkov V.I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fund. i prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl

[6] Zenkov V.I., “On intersections of primary subgroups in the group Aut($L_n(2)$)”, Proc. Steklov Inst. Math., 293, Suppl. 1, 2016, 270–277 | DOI | MR

[7] Zenkov V.I., Nuzhin Ya.N., “O peresecheniyakh primarnykh podgrupp nechetnogo poryadka v konechnykh pochti prostykh gruppakh”, Fundament. i prikl. matematika, 19:6 (2014), 115–123

[8] Zenkov V.I., “O peresecheniyakh nilpotentnykh podgrupp v konechnykh simmetricheskikh i znakoperemennykh gruppakh”, Tr. instituta matematiki i mekhaniki UrO RAN, 19:3 (2013), 145–149

[9] Convay J. H. [et. al.], Atlas of finite group, Clarendon Press, Oxford, 1985, 252 pp.

[10] Gorenstein D., Lyons R., “The local structure of finite groups of characteristic 2 type”, Mem. Amer. Math. Soc., 42 (1983), 1–731 | MR

[11] Zenkov V.I., “O peresecheniyakh abelevykh podgrupp v konechnykh gruppakh”, Mat. zametki, 56:2 (1994), 150–152 | Zbl

[12] Jamali A.R., Viseh M., “On nilpotent subgroups containing nontrivial normal subgroups”, J. Group Theory, 13:4 (2010), 411–416 | DOI | MR | Zbl

[13] Zenkov V.I., Mazurov V.D., “O peresechenii silovskikh podgrupp v konechnykh gruppakh”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[14] Zenkov V.I., “O peresecheniyakh dvukh nilpotentnykh podgrupp v konechnykh gruppakh s tsokolem $L_2(q)$”, Sib. mat. zhurn., 57:6 (2016), 1280–1290 | MR | Zbl

[15] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, M., 1972, 239 pp. | MR

[16] Busarkin V.M., Gorchakov Yu.M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 113 pp.