Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 110-125

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\upsilon$ be a weight on $(-1,1),$ i.e., a measurable integrable nonnegative function nonzero almost everywhere on $(-1,1)$. Denote by $L^\upsilon(-1,1)$ the space of real-valued functions $f$ integrable with weight $\upsilon$ on $(-1,1)$ with the norm $\|f\|=\int_{-1}^{1}|f(x)|\upsilon(x)\,dx$. We consider the problems of the best one-sided approximation (from below and from above) in the space $L^\upsilon(-1,1)$ to the characteristic function of an interval $(a,b),$ $-1$ by the set of algebraic polynomials of degree not exceeding a given number. We solve the problems in the case where $a$ and $b$ are nodes of a positive quadrature formula under some conditions on the degree of its precision as well as in the case of a symmetric interval $(-h,h),$ $0$ for an even weight $\upsilon$.
Keywords: one-sided approximation, characteristic function of an interval, algebraic polynomials.
@article{TIMM_2018_24_4_a8,
     author = {M. V. Deikalova and A. Yu. Torgashova},
     title = {Best {One-Sided} {Approximation} in the {Mean} of the {Characteristic} {Function} of an {Interval} by {Algebraic} {Polynomials}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {110--125},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/}
}
TY  - JOUR
AU  - M. V. Deikalova
AU  - A. Yu. Torgashova
TI  - Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 110
EP  - 125
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/
LA  - ru
ID  - TIMM_2018_24_4_a8
ER  - 
%0 Journal Article
%A M. V. Deikalova
%A A. Yu. Torgashova
%T Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 110-125
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/
%G ru
%F TIMM_2018_24_4_a8
M. V. Deikalova; A. Yu. Torgashova. Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 110-125. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/