Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 110-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\upsilon$ be a weight on $(-1,1),$ i.e., a measurable integrable nonnegative function nonzero almost everywhere on $(-1,1)$. Denote by $L^\upsilon(-1,1)$ the space of real-valued functions $f$ integrable with weight $\upsilon$ on $(-1,1)$ with the norm $\|f\|=\int_{-1}^{1}|f(x)|\upsilon(x)\,dx$. We consider the problems of the best one-sided approximation (from below and from above) in the space $L^\upsilon(-1,1)$ to the characteristic function of an interval $(a,b),$ $-1$ by the set of algebraic polynomials of degree not exceeding a given number. We solve the problems in the case where $a$ and $b$ are nodes of a positive quadrature formula under some conditions on the degree of its precision as well as in the case of a symmetric interval $(-h,h),$ $0$ for an even weight $\upsilon$.
Keywords:
one-sided approximation, characteristic function of an interval, algebraic polynomials.
@article{TIMM_2018_24_4_a8,
author = {M. V. Deikalova and A. Yu. Torgashova},
title = {Best {One-Sided} {Approximation} in the {Mean} of the {Characteristic} {Function} of an {Interval} by {Algebraic} {Polynomials}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {110--125},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/}
}
TY - JOUR AU - M. V. Deikalova AU - A. Yu. Torgashova TI - Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 110 EP - 125 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/ LA - ru ID - TIMM_2018_24_4_a8 ER -
%0 Journal Article %A M. V. Deikalova %A A. Yu. Torgashova %T Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials %J Trudy Instituta matematiki i mehaniki %D 2018 %P 110-125 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/ %G ru %F TIMM_2018_24_4_a8
M. V. Deikalova; A. Yu. Torgashova. Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 110-125. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/