Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 110-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\upsilon$ be a weight on $(-1,1),$ i.e., a measurable integrable nonnegative function nonzero almost everywhere on $(-1,1)$. Denote by $L^\upsilon(-1,1)$ the space of real-valued functions $f$ integrable with weight $\upsilon$ on $(-1,1)$ with the norm $\|f\|=\int_{-1}^{1}|f(x)|\upsilon(x)\,dx$. We consider the problems of the best one-sided approximation (from below and from above) in the space $L^\upsilon(-1,1)$ to the characteristic function of an interval $(a,b),$ $-1$ by the set of algebraic polynomials of degree not exceeding a given number. We solve the problems in the case where $a$ and $b$ are nodes of a positive quadrature formula under some conditions on the degree of its precision as well as in the case of a symmetric interval $(-h,h),$ $0$ for an even weight $\upsilon$.
Keywords: one-sided approximation, characteristic function of an interval, algebraic polynomials.
@article{TIMM_2018_24_4_a8,
     author = {M. V. Deikalova and A. Yu. Torgashova},
     title = {Best {One-Sided} {Approximation} in the {Mean} of the {Characteristic} {Function} of an {Interval} by {Algebraic} {Polynomials}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {110--125},
     year = {2018},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/}
}
TY  - JOUR
AU  - M. V. Deikalova
AU  - A. Yu. Torgashova
TI  - Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2018
SP  - 110
EP  - 125
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/
LA  - ru
ID  - TIMM_2018_24_4_a8
ER  - 
%0 Journal Article
%A M. V. Deikalova
%A A. Yu. Torgashova
%T Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2018
%P 110-125
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/
%G ru
%F TIMM_2018_24_4_a8
M. V. Deikalova; A. Yu. Torgashova. Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 110-125. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a8/

[1] Bojanic R., DeVore R., “On polynomials of best one-sided approximation”, Enseign. Math., 2:12 (1966), 139–164 | MR | Zbl

[2] Krylov V.I., Priblizhennoe vychislenie integralov, Fizmatlit, M., 1959, 327 pp.

[3] Korneichuk N.P., Ligun A.A., Doronin V.G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 254 pp. | MR

[4] Bustamante J., Quesada J.M., Martinez-Cruz R., “Best one-sided $L_1$ approximation to the Heaviside and sign functions”, J. Approx. Theory, 164 (2012), 791–802 | DOI | MR | Zbl

[5] Li X.-J., Vaaler J.D., “Some trigonometric extremal functions and the Erdös-Turán type inequalities”, Ind. Univ. Math. J., 48:1 (1999), 183–236 | DOI | MR | Zbl

[6] Motornyi V.P., Motornaya O.V., Nitiema P.K., “Ob odnostoronnem priblizhenii stupenki algebraicheskimi mnogochlenami v srednem”, Ukr. mat. zhurn., 62:3 (2010), 409–422 | MR

[7] Bustamante J., Martinez-Cruz R., Quesada J.M., “Quasi orthogonal Jacobi polynomials and best one-sided $L_1$ approximation to step functions”, J. Approx. Theory, 198 (2015), 10–23 | DOI | MR | Zbl

[8] Babenko A.G., Kryakin Yu.V., Yudin V.A., “Odnostoronnee priblizhenie v $L$ kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 82–95

[9] Babenko A.G., Deikalova M.V., Revesz Sz.G., “Weighted one-sided integral approximations to characteristic functions of intervals by polynomials on a closed interval”, Proc. Steklov Inst. Math., 297, Suppl. 1, 2017, S11–S18 | DOI | MR | Zbl

[10] Beckermann B., Bustamante J., Martinez-Cruz R., Quesada J.M., “Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa”, Calcolo, 51:2 (2014), 319–328 | DOI | MR | Zbl

[11] Berezin I.S., Zhidkov N.P., Metody vychislenii, v. 1, Fizmatgiz, M., 1962, 464 pp. | MR

[12] Izlozhenie lektsii S. B. Stechkina po teorii priblizhenii, Izd-vo UrO RAN, Ekaterinburg, 2010, 154 pp.

[13] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976, 327 pp. | MR