Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 104-109
Voir la notice de l'article provenant de la source Math-Net.Ru
For a function $f$ continuous on a closed interval, its modulus of fractality $\nu(f,\varepsilon)$ is defined as the function that maps any $\varepsilon>0$ to the smallest number of squares of size $\varepsilon$ that cover the graph of $f$. The following condition for the uniform convergence of the Fourier series of $f$ is obtained in terms of the modulus of fractality and the modulus of continuity $\omega(f,\delta)$: if
$$
\omega (f,\pi/n) \ln\bigg(\frac{\nu(f,\pi/n)}{n}\bigg) \longrightarrow 0\ \ \ as \ n\longrightarrow+\infty,
$$
then the Fourier series of $f$ converges uniformly. This condition refines the known Dini–Lipschitz test. In addition, for the growth order of the partial sums $S_n(f,x)$ of a continuous function $f$, we derive an estimate that is uniform in $x\in[0,2\pi]$:
$$
S_n(f,x)=o\bigg( \ln \bigg(\frac{\nu (f,\pi / n)}{n}\bigg)\bigg).
$$
The optimality of this estimate is shown.
Keywords:
trigonometric Fourier series
Mots-clés : uniform convergence, fractal dimension.
Mots-clés : uniform convergence, fractal dimension.
@article{TIMM_2018_24_4_a7,
author = {M. L. Gridnev},
title = {Convergence of {Trigonometric} {Fourier} {Series} of {Functions} with a {Constraint} on the {Fractality} of {Their} {Graphs}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {104--109},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a7/}
}
TY - JOUR AU - M. L. Gridnev TI - Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs JO - Trudy Instituta matematiki i mehaniki PY - 2018 SP - 104 EP - 109 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a7/ LA - ru ID - TIMM_2018_24_4_a7 ER -
%0 Journal Article %A M. L. Gridnev %T Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs %J Trudy Instituta matematiki i mehaniki %D 2018 %P 104-109 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a7/ %G ru %F TIMM_2018_24_4_a7
M. L. Gridnev. Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 24 (2018) no. 4, pp. 104-109. http://geodesic.mathdoc.fr/item/TIMM_2018_24_4_a7/